

OVERVIEW AC SERVO DRIVES & MOTION CONTROL

A

MINAS A5 series servo drives

Highly dynamic servo drives with state-of-the-art technology. Large power range (50W–15kW) combined with a lightweight and compact design. Innovative functions to suppress resonance frequencies and vibrations. Multiple control features such as pulse, analog, and network technology in real-time communication (100Mbit/s).

Motion control libraries, configuration and programming software

PLC programming software Control FPWIN Pro (compliant with IEC 61131-3). The free configuration software PANA-TERM and Mselect3 support users in the system setup, thus shortening the time required for commissioning. In addition, you can download motion control libraries for free. With the libraries' predefined function blocks, it is easy to solve even complex positioning tasks.

C

FP series PLC

The PLC comes already equipped with the hardware required for positioning tasks. FP0R, FP Σ (Sigma), and FPX are capable of controlling up to 4 axes independently. By using positioning units, the system can be expanded to control up to 10 axes. Add network technology in the shape of RTEX or EtherCAT positioning units, and the FP series allows you to control up to 256 axes with the real-time Ethernet bus.

GT and HM500 series touch terminals

Touch terminals allow humans and machines to interact with each other. The machine's role therein is to display data, results, messages, etc. and to receive instructions and execute tasks assigned by people. Panasonic's new touch terminals are ideally suited for these tasks. They are optimally suited both for factory and building automation. Panasonic HMIs cover a wide spectrum, ranging in size from a compact 3" touch panel to a color 13" display for sophisticated applications.

Contents

Comprehensive MC solution	s by Panasonic2
Overview	3
Applications	4
MINAS A5 series	6-28
MINAS LIQI series	29-32
Cables	33-35

Accessories	36-37	
Programmable controllers	38	
Positioning functions	39-43	
Software	44-49	
Memo	50	
Other Panasonic products	51	

MINAS s	series	LIQI	A5E	A5 A5N					
Rated power	r	50–1,000W	50–5,000W	50–5,000W 50–15,000W					
Supply up to 1500W		1 x 230VAC		1 x/3 x 2	230VAC				
voltage from 1000W		-	3 x 400VAC						
Bandwidth (v	velocity response)	1,000Hz		200	OHz				
Rated rotatio	onal speed		1500–3000 (r/min)						
Max. rotatior	nal speed		2000–6000 (r/min)						
Rated torque	9	0.16–3.2Nm	0.16–23.9Nm 0.16–99.5Nm						
Peak torque		0.48–9.5Nm	0.48–71.6Nm		0.48–224Nm				
Control funct	tions	Position	n control	Posit	ion, velocity, and torque c	ontrol			
Degree of pr	rotection (motor)	IP65	IP67						
Control input	t	Pu	Pulse Pulse, analog						

With its power range of 50 to 15,000W, Panasonic servo drives are ideally suited to solve both small (1 or 2 axes) and complex tasks (up to 256 axes) easily and quickly.

The following industries make use of servo drives: packaging, textile, plastics, wood, paper, metal and mounting, and processing.

Application examples:

Packaging machine

A complete solution with PLC, touch terminal, and servo drives from Panasonic. Our compact drives offer a great advantage over competitor's products for packaging machines (labeling, packing, etc.).

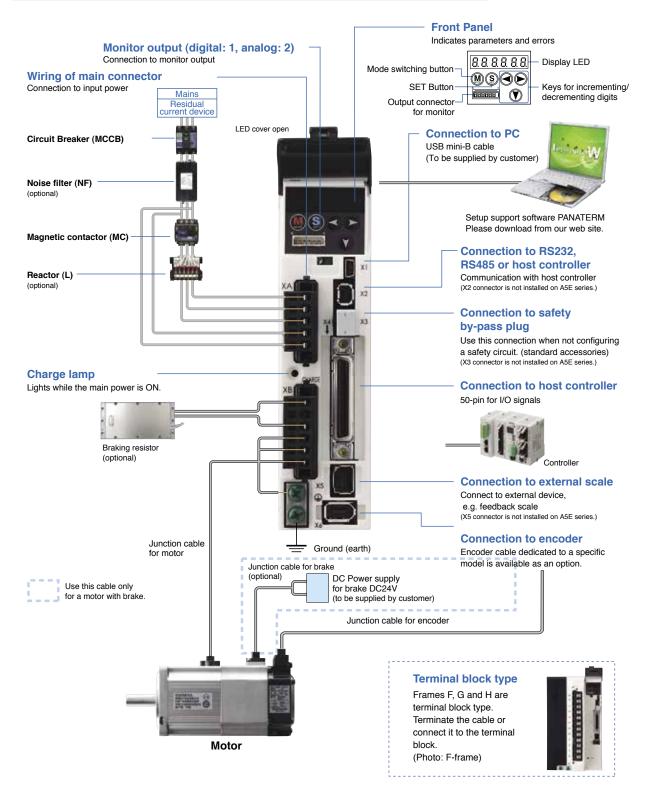
Cutting machine

The FP2SH PLC controls the positioning so that the machine can cut at high speed and with an accuracy of 10 micrometers.

X-Y table

Positioning XY axes to apply adhesive.

One FP Σ (Sigma) controls 2 servo drives as well as the adhesive-dispensing device according to the predefined profile.



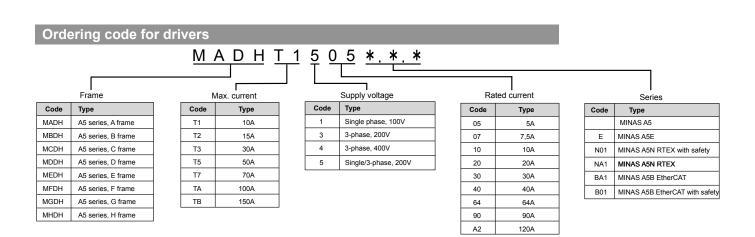
Food processing machine

This solution from Panasonic includes an FP0R PLC, a GT32 touch terminal, a MINAS A5 driver, and a VF0 inverter. To make burgers, the movement of three axes has to be precisely synchronized.

Connector type (100/200V: A to E frame)

MINAS A5 series

MINAS A5 series


The MINAS A5 series: Panasonic's standard AC servo drives.

The highly dynamic servo drives can be controlled by pulses or analog signals.

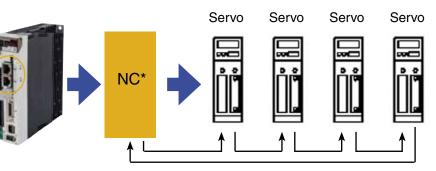
- Ultrafast response frequency: 2kHz bandwidth (velocity response)
- · Pulse input and output with up to 4MHz
- · Real-time autotuning function during operation
- 4 notch filters: manual/automatic
- 4 damping filters: manual/automatic
- PANATERM V5.0: Free software for configuration and motion simulation
- Conforms to the following safety standards: EN954-1(CAT3), ISO13849-1(PLd), EN61508(SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1
- Full-closed control

Rated power	Driver MINAS A5E 230V AC	Drivers MINAS A5; A5N; A5B 230V AC	Drivers MINAS A5; A5N; A5B 3x380V AC	Frame
50/100W	MADHT1505E	MADHT1505***		А
200W	MADHT1507E	MADHT1507***		A
400W	MBDHT2510E	MBDHT2510***	_	В
750W	MCDHT3520E	MCDHT3520***		С
1kW		MDDHT5540***	MDDHT2412***	D
1.5kW		MDDH15540	MDDHT3420***	D
2kW			MEDHT4430***	E
3kW	_		MFDHT5440***	F
4/5kW		_	MFDHTA464***	Г
7.5kW			MGDHTB4A2***	G
11/15kW			MHDHTB4A2***	Н

MINAS A5 network series

Thanks to its high transmission speed and sampling rate, RTEX (Realtime Express), the fast, real-time Ethernet bus for automation, is particularly well suited for highly dynamic single and multiple axes positioning tasks. The communication between master and slaves happens in real-time.

EtherCAT (Ethernet for Control Automation Technology) offers similar excellent features like RTEX. However, EtherCAT is an open, standardized field bus that allows an open data exchange with all other EtherCAT motion controllers.



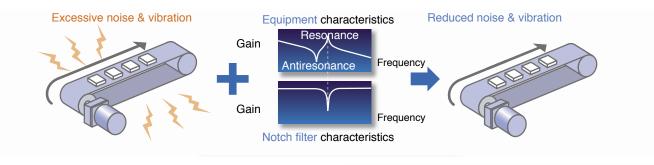
Features	MINAS A5N	MINAS A5B
Real-time communication 100Mbit/s	RTEX protocol	CAN over EtherCAT (CoE)
Supports position, velocity and torque control	\checkmark	\checkmark
Manual and automatic vibration suppression (adjustable in the driver)	\checkmark	✓
Full control of	up to 32 axes	up to 64 axes
Conforms to the following safety standards: EN954-1(CAT3), ISO13849-1 (PLd), EN61508(SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1	\checkmark	✓
Easy wiring using standard Ethernet cables (CAT5e, up to 100m between units)	\checkmark	✓
Positioning units for	$\mbox{FP}\Sigma$ (Sigma), FP2SH and FP7	FP7

Easy mounting and reliable connections thanks to loop wiring

* NC: Numerical control (motion controller, positioning unit)

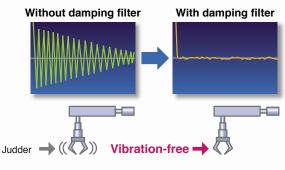
7

External encoders for full-closed control

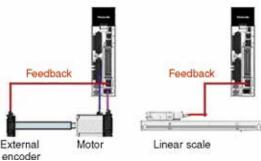

Using an external encoder ensures high-precision positioning. For most applications, positioning with a motor encoder works fine. However, mechanical parts may cause slight deviations that the motor encoder cannot control. This is where an external encoder or a linear scale is needed. They help to compensate even small inaccuracies so that positioning practically always works correctly.

Real-time auto-gain tuning

If this function is activated, tuning is performed automatically upon completion of several operations. When the response frequency has been adjusted, simple tuning results in a change to a single parameter value. Fine-tuning can be carried out by activating the gain adjustment mode in the setup software. The automatic vibration suppression function minimizes damage to the equipment. Additional mode and stiffness parameters enable easy response frequency optimization for specific machine types such as vertical axis or high-friction, belt-driven machines.


Manual and automatic notch filters

Highly sensitive notch filters eliminate the need to monitor troublesome vibration frequencies. By automatically detecting vibration and defining a simple auto-gain setting, the MINAS A5's filters greatly reduce interference and vibration caused by equipment resonance. For depth adjustment, the A5 features a total of four notch filters, two of which share the auto setup. The setup frequency range for the filters is 50–50,000Hz.


Manual and automatic damping filters

Damping filters that can be set automatically suppress the equipment's resonance and the natural vibration frequency component of the command input, which greatly reduces axis vibration at machine stoppage. The number of damping filters has been increased to four from the conventional two; of these four, two are for simultaneous use. The available frequency range has been extended significantly from 1 to 200Hz.

Vibration

generated

Belt drive

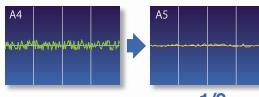
Autotuning approx. 12ms

Frequency scan

Vertical axis

Autotuning <2ms

Completion of adaptive


filter setup

Vibration

reduced

Low cogging torque

Compared to competitor products, the MINAS A5 achieves the industry's most stable speed and lowest cogging torque by minimizing pulse width. This was made possible by a new design featuring a 10-pole rotor for the motor as well as magnetic field analysis. With the reduction in torque variation, the MINAS A5's speed, stability and positioning behavior have been markedly improved.

Vibration reduced to only 1/8

Software tool PANATERM with motion simulation

PANATERM reads response frequency data from the actual machine. A simplified simulation function allows you to check gain and filter effects without adjusting the actual equipment.

3-step control setting

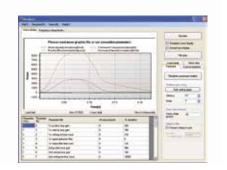
Control parameters are activated according to the operating condition (deceleration during operation, stopping during fast positioning, standstill). By controlling the motion it is possible to perform even faster positioning with less vibration.

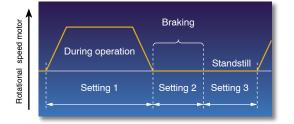
Integrated safety function (STO)

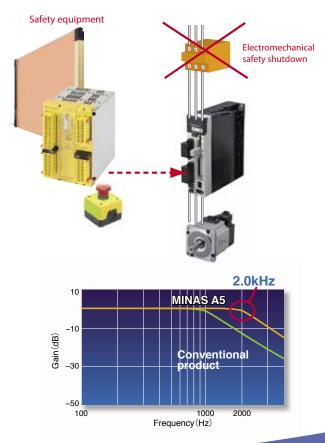
To insulate the motor power, MINAS A5 servo drivers feature independent, hardware-based, redundant circuits. Magnetic breakers prescribed for machines by the Low-Voltage Directive are thereby unnecessary. This saves both space and money. The servo driver's safety functions fulfill the following safety standards: EN954-1(CAT3), ISO13849-1 (PLd), EN61508 (SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1.

Dynamic brake:

The dynamic brake is activated in case of an emergency, i.e. when:


- The main switch has been turned off,
- The input SRV-OFF is not active,
- One of the protective functions is activated or,
- The input INH is not active.

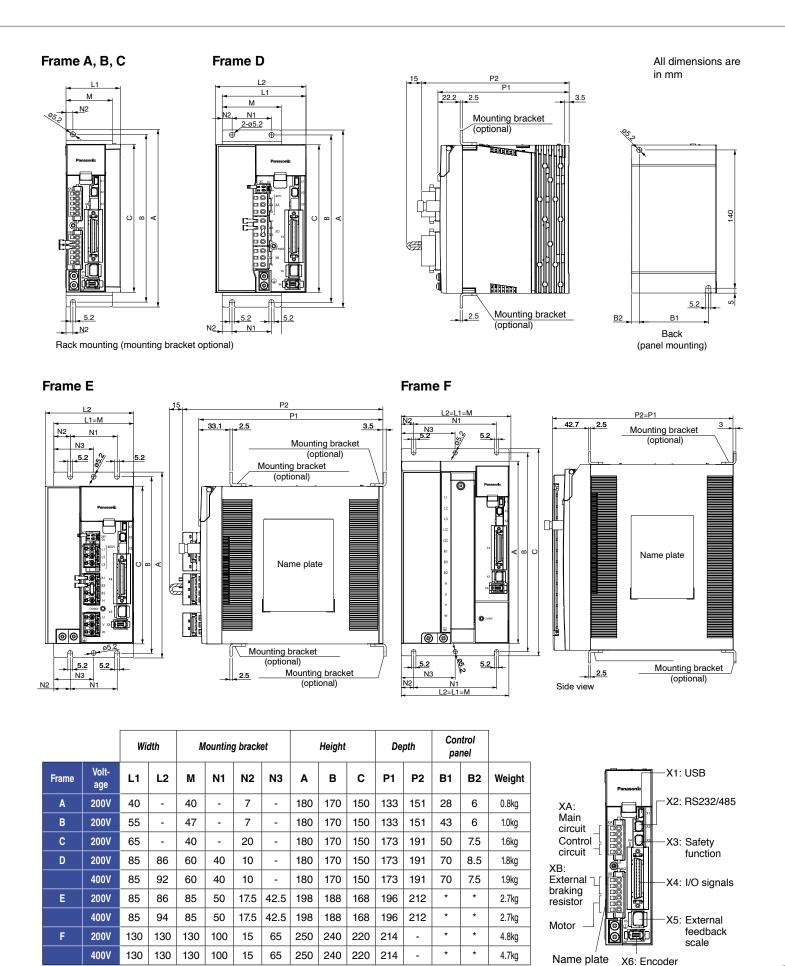

Torque limit


Torque limit is an indispensable function for torque-controlled applications or generally for protection against mechanical damages.

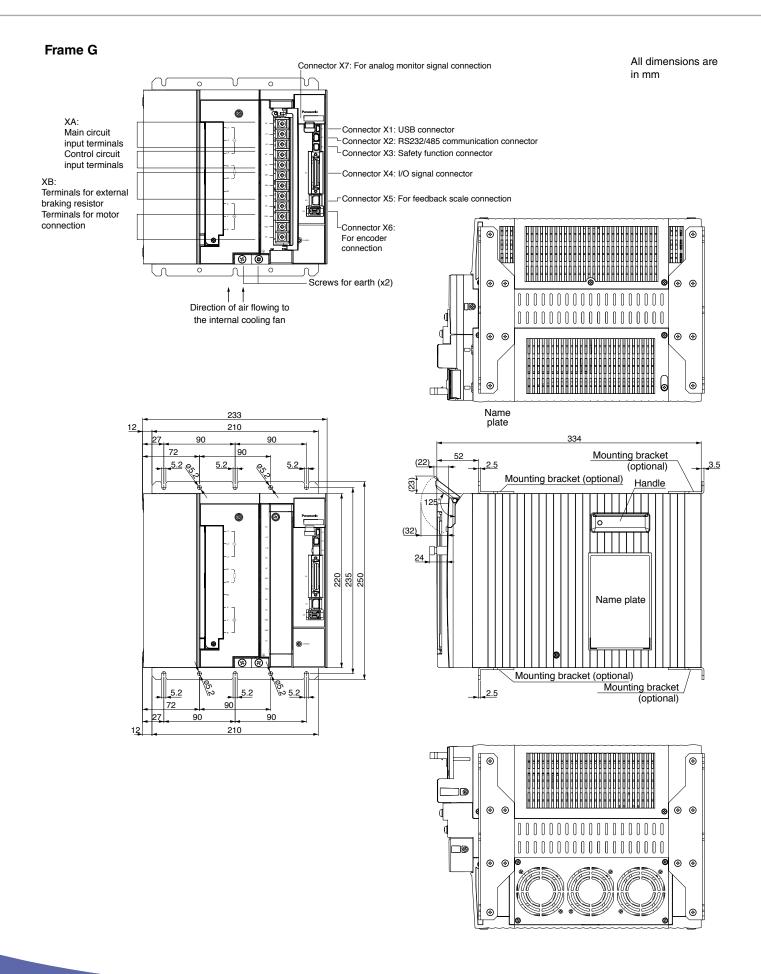
Possible settings:

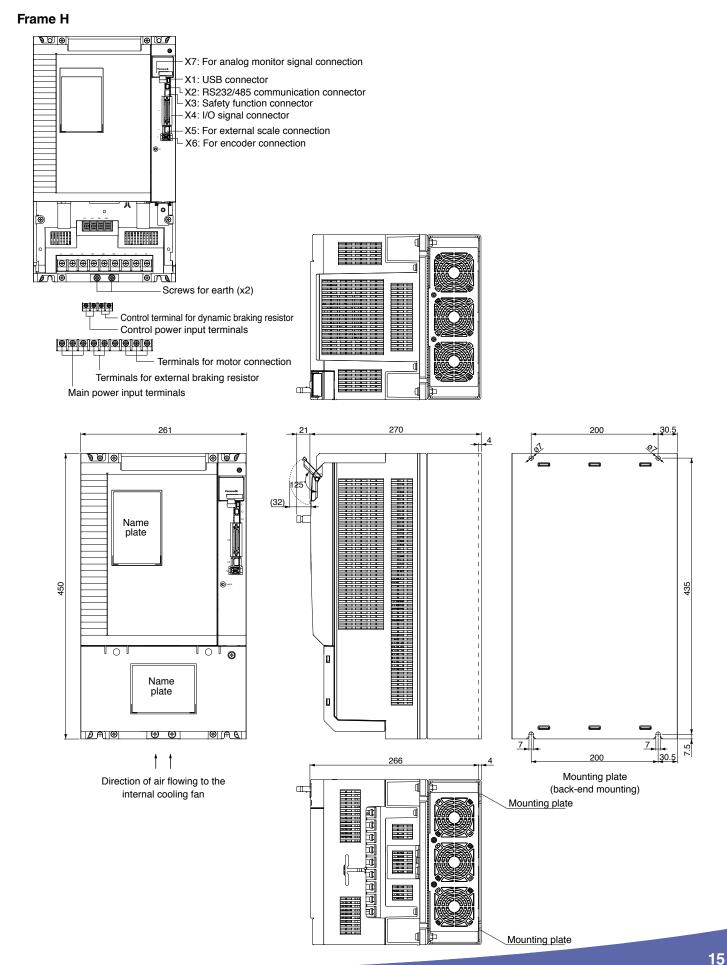
- As specified by analog value,
- Different values for positive and negative direction,
- 2 digital input points for fixed values.

								Over	view MINAS	A5 motors a	nd accessori	es			
				Motor					Driver		Cat			Filter	Braking resistor
	Rated power W	Max. torque Nm	Rated rota- tional speed (max.) r/min	Motor type	Holding brake	IP67 degree of protection	Key shaft	Encoder		Motor	cable	Encoder	cable	EMC filter	
	Rate	Ma:	tion (ma	Wo	Hold	IP67 pro	ž			Without holding brake	With holding brake	20-bit incremental	17-bit absolute		
				NONESTON		1	1	1	L	ow inertia 200V AC	1		1	1	
	50	0,16 (0,48)	3000 (6000)	MSME5AZG1U MSME5AZG1V	x	X	x x	1			 MFMCB0□□0PJT*				
	100	0,32	3000	MSME012G1U		x	x	5	MADHT1505						BWD250100
		(0,95) 0,64	(6000) 3000	MSME012G1V MSME022G1U	x	x x	x x	code			MFMCB0DD0PJT*		MFECADD0GJE	FN2080-6-06	
	200	(1,91)	(6000)	MSME022G1V	x	x	x	tal er 3 p/r	MADHT1507	MFMCA000WJD	MFMCB000PJT*	MFECA 0WJD	(with battery box)	or FS21238607	
	400	1,3 (3,8)	3000 (6000)	MSME042G1U MSME042G1V	x	x x	x x	incremental encoder 1,048,576 p/r	MBDHT2510		 MFMCB0□□0PJT*				BWD250072
	750	2,4	3000	MSME082G1U		x	x	incre 1,04	MCDHT3520						
9 10	1000	(7,1) 3,18	(6000) 3000	MSME082G1V MSME102G1G	x	X X	x x	20-bit		MFMCD0002GCD	MFMCB000PJT*				
Low inertia	1000	(9,55)	(5000)	MSME102G1H	x	x	x		MDDHT5540	 MFMCD0□□2GCD	MFMCA0002HCD	MFECADOGTD		DV0P4220	BWD500035
v in	1500	4,77 (13,3)	3000 (5000)	MSME152G1G MSME152G1H	x	x x	x x	-			MFMCA002HCD		(with battery box)		
È		0.40	0000	MSME104G1G	1	x	x	T	l	ow inertia 400V AC					
	1000	3,18 (9,55)	3000 (5000)	MSME104G1H	x	x	x		MDDHT3420		MFMCE002HCD				BWD500150
	1500	4,77 (13,3)	3000 (5000)	MSME154G1G MSME154G1H	x	x x	x x	code	WDD1110420	MFMCD0002GCD	 MFMCE0□□2HCD				DWD300130
	2000	6,37	3000	MSME204G1G		х	x	20-bit incremental encoder 1,048,576 p/r	MEDHT4430	MFMCD002GCD				FN3268-7-44	BWD500100
		(19,1) 9,55	(5000) 3000	MSME204G1H MSME304G1G	x	x x	x x	ment 8,576		 MFMCA0□□2GCT	MFMCE002HCD	MFECADOGTD	MFECADOGTE (with battery box)		
	3000	(28,6)	(5000)	MSME304G1H	x	х	x	incre 1,04	MFDHT5440		MFMCA0002HCT				
	4000	12,7 (38,2)	3000 (4500)	MSME404G1G MSME404G1H	x	x x	x x	0-bit		MFMCA0DD2GCT	 MFMCA0002HCT				BWD600047
	5000	15,9	3000	MSME504G1G		х	х	Ñ	MFDHTA464	MFMCA002GCT				FN3268-16-44	
		(47,7)	(4500)	MSME504G1H	x	x	x		l Me	 edium inertia 200V A0	MFMCA0002HCT				
	1000	4,7	2000	MDME102G1G		x	x		MDDHT3530	MFMCD0002GCD					
		(14,3) 7,16	(3000) 2000	MDME102G1H MDME152G1G	x	x x	x x	20-bit increm. encoder		 MFMCD0□□2GCD	MFMCA002HCD	MFECADOGTD	MFECADOGTE (mit Batteriebox)	DV0P4220	BWD500035
	1500	(21,5)	(3000)	MDME152G1H	x	x	x	ŝ	MDDHT5540		MFMCA0002HCD				
		9,55	2000	MDME204G1G	1	x	x	1	1	edium inertia 400V A0	; 		1	[DWDEssee
tia	2000	(28,6)	(3000)	MDME204G1H MDME304G1G	x	x	x]	MEDHT4430	-	MFMCE002HCD			FN3268-7-44	BWD500100
ineı	3000	14,3 (43,0)	2000 (3000)	MDME304G1G MDME304G1H	x	x x	x x	der	MFDHT5440	MFMCA002GCT	 MFMCA0DD2HCT				
Medium inertia	4000	19,1 (57,3)	2000 (3000)	MDME404G1G MDME404G1H	x	X X	x x	incremental encoder 1,048,576 p/r		MFMCA002GCT	 MFMCA0□□2HCT				BWD600047
edi	5000	23,9	2000	MDME504G1G	^	x	x	ental 576 p	MFDHTA464			MFECADOGTD	MFECADD0GTE	FN3268-16-44	
Σ		(71,6) 47,8	(3000) 1500	MDME504G1H MDME754G1G	x	x x	x x	crem 048,			MFMCA0002HCT		(with battery box)		
	7500	(119)	(2000)	MDME754G1H	x	x	x		MGDHTB4A2						BWD600027
	11000	70 (175)	1500 (2000)	MDMEC14G1G MDMEC14G1H	x	x x	x x	20-bit		Use DV0PM20056	Use DV0PM20057			FN3258-30-33	BWD
	15000	95,5	1500	MDMEC54G1G		x	x	1	MHDHTB4A2						600027K02LV
		(224)	(2000)	MDMEC54G1H	x	x	x	I		ligh inertia 200V AC					
	200	0,64	3000	MHMD022G1U		IP65	x		MADHT1507						
	200	(1,91)	(5000) 3000	MHMD022G1V MHMD042G1U	x	IP65 IP65	x x	20-bit increm. encoder			MFMCB000GET*		MFECADDOEAE	FN2080-6-06	
	400	1,3 (3,8)	(5000)	MHMD042G1V	х	IP65	x	bit in encoc	MBDHT2510	MFMCA0000EEL	 MFMCB0DD0GET*	MFECADD0EAM	(with battery box)	oder FS21238607	BWD250072
	750	2,4 (7,1)	3000 (4500)	MHMD082G1U MHMD082G1V	x	IP65 IP65	x x	50	MCDHT3520		 MFMCB0□□0GET*				
							1	ı 1	l F	l ligh inertia 400V AC		L	I	1	
ia.	1000	4,77 (14,3)	2000 (3000)	MHME104G1G MHME104G1H	x	x x	x x	-	MDDHT2412	MFMCD0002GCD	 MFMCE0□□2HCD				
nert	1500	7,16	2000	MHME154G1G		x	х	5	MDDHT3420	MFMCD002GCD					BWD500150
High inertia		(21,5) 9,55	(3000) 2000	MHME154G1H MHME204G1G	x	x x	x x	incremental encoder 1,048,576 p/r		 MFMCE0□□2GCD	MFMCE002HCD			FN3268-7-44	
Hig	2000	(43,0)	(3000)	MHME204G1H	x	x	x	tal er 5 p/r	MEDHT4430		MFMCE002HCD				BWD500100
	3000	14,3 (28,6)	2000 (3000)	MHME304G1G MHME304G1H	x	x x	x x	3men 18,57(MFDHT5440	MFMCA002GCT	 MFMCA0□□2HCT	MFECA DOGTD	MFECADOGTE (with battery box)		
	4000	19,1	2000	MHME404G1G		x	x	incr∈ 1,04		MFMCA002GCT				BWD600047	
		(57,3) 23,9	(3000) 2000	MHME404G1H MHME504G1G	x	x x	x x	20-bit	MFDHTA464	 MFMCA0DD2GCT	MFMCA002HCT			FN3268- 16-44	
	5000	(71,6)	(3000)	MHME504G1H	x	x	x							Etiooss	ļ
	7500	47,8 (119)	1500 (3000)	MHME754G1G MHME754G1H	x	x x	x x		MGDHTB4A2	Use DV0PM20056	Use DV0PM20056			FN3258- 30-33	BWD600027
								-			-		-		


* For motors with a holding brake < 1kW you need two cables: one for the motor, one for the brake.

				Frame	MINAS A5E	MINAS A5, A5N, A5B			
		Main circuit		A, B, C, D	1-phase, 3-phase, 200–240	0V (+10%, -15%), 50/60Hz			
		Control	200V	A, B, C, D	1-phase, 200–240V (+	10%, -15%), 50/60Hz			
	Input power	circuit		E, F	1-phase, 200-230V (+)%, -15%), 50/60Hz			
	Input power	Main circuit	400V	D, E, F, G, H	-	3-phase, 380–480V (+10%, -15%), 50/60Hz			
		Control circuit	40	D, E, F, G, H	-	24V DC (±15%)			
		Те	mpera	ature	0–50°C, storage temperature: -20 to +65°C (max. temperature 80°C for 72h)	0-55°C, storage temperature: -20 to +65°C (max. temperature 80°C for 72h)			
	Operating conditions	Amb	ient h	umidity	Operation and storage: 20-	85% RH (non-condensing)			
	contaitions		Altitud	de	Max. 1000m al	bove sea level			
		, v	/ibrati	on	Max. 5,88m/s ² , 10-60Hz (no contin	uous use at resonance frequency)			
	Control method				IGBT sinus	oidal PWM			
	Freeder	Increm	ental	(default)	20-bit increme (resolution 1,				
<u>0</u>	Encoder	A	Absolute		-	17-bit absolute encoder on request (resolution 131,072)			
		A/B phase			-	Initialization signal differential input			
	External feedbac	ack scale	ck scale Serial		-	Compatible with Mitutoyo (AT500, ST771)			
200	Control gignala	Input points		put points	10				
	Control signals		Output points		6				
ב	Analog/digital s	ignals	Input points		-	3 (16-bit A/D: 1, 12-bit A/D: 2)			
			Οι	Itput points	2				
	Pulse signals		In	put points	2 line	driver			
			Οι	Itput points	3 line driver (A, B, and Z-phas	e), 1 open collector (Z-phase)			
				USB	Interface t	o PC, etc.			
	Interface			RS232	_	1:1 communication			
				RS485	-	1:n communication with up to 31 axes via host (FP series PLC)			
	Safety functions	s			_	IEC61800-5-2 STO			
	Front panel				5 buttons (MODE, SET, UP, DOWN, SHIFT), LED (6 digits), analog output	5 buttons (MODE, SET, UP, DOWN, SHIFT), LED (6 digits), analog output, digital output			
	Braking resistor			A, B, G, and H frame: only C–F frame: built-in braking resistor (e)					
	Dynamic brake				A–G frame: built-in braking resistor (G frame: e H frame: only extern				
	Control mode	Control mode			Position control	 7 different control modes 1. Position control, 2. Velocity control, 3. Torque control, 4. Position/ velocity control, 5. Position/torque control, 6. Velocity/torque control, 7. Full-closed control 			


Driver functions


			MINAS A5E	MINAS A5, A5N, A5B					
	Control input			oulse inhibition, 3. Electronic gear switching, control switching					
	Control output			complete etc.					
		Line driver A		500kpps					
ō		Open collector	200kpps						
Position control		Line driver B	4Mpps						
Ŭ L	Pulse input	Signal format	Differential input	/square-wave pulse					
sitic		Electronic gear	Scaling of pulse frequency from 1/1000 – 1000 times						
P		Smoothing filter	Primary delay filter or	FIR filter, customizable					
	Analog input	Torque limit command	-	Individual torque limit for positive and negative direction					
	Instantaneous speed	lobserver	Ava	ailable					
	Damping control		Ava	ailable					
	Control input		_	13. Selection of internal velocities, 4. Zero speed clamp					
	Control output		_	Set velocity has been reached, etc.					
	Anglening	Velocity command	-	Velocity and direction					
_	Analog input	Torque limit command	_	Available					
ntro	Velocity range		-	1 – 6000r/min					
Ö	Internal velocity com	mand	-	8 velocity set values					
Velocity control	Smooth start-up and	stopping	_	Individual setup of acceleration and deceleratio from 0 – 10s/1000r/min S-curve acceleration and deceleration ramp possible					
	Zero speed clamp		_	Available					
	Instantaneous speed	lobserver	_	Available					
	Velocity control filter		_	Available					
_	Control input		_	Zero speed clamp, Torque direction command etc.					
Torque control	Control output		_	Set torque has been reached (at predefined velocity)					
Torqu	Analog input	Velocity command	_	Set speed can be scaled					
	Analog input	Speed limit function	-	Speed can be scaled					
	Control input		-	1. Clear deviation counter, 2. Command pulse inhibition, 3. Electronic gear switching, 4. Damping control switching					
	Control output		_	Full-closed control complete					
2		Line driver A	-	500kpps					
onti		Open collector	_	200kpps					
∋d c		Line driver B	-	4Mpps					
lose	Pulse input	Signal format	-	Differential input/square-wave pulse					
Full-closed contr		Electronic gear	_	Scaling of pulse frequency from 1/1000 – 1000 times					
		Smoothing filter	_	Primary delay filter or FIR filter, customizable					
	Analog input	Torque limit command	-	Torque limit available					
	Setup range of division scale	on/multiplication of feedback	_	From 1/40 – 160 times					
	Autotuning			b the vibration behavior of the mechanical parts es to the load					
Ires	Division of encoder f	eedback pulse		nal resolution of the encoder					
eatı		Error messages causing	Overvoltage, undervoltage, overspeed, overload, over-						
Other features	Protective function	switch-off Error messages requiring		t, encoder error, etc.					
	Alorm history	acknowledgement		d pulse division error, EEPROM error, etc.					
	Alarm history		Can be logge	ed for reference					

Driver dimensions

* For the dimensions, please refer to the data sheet of the mounting bracket

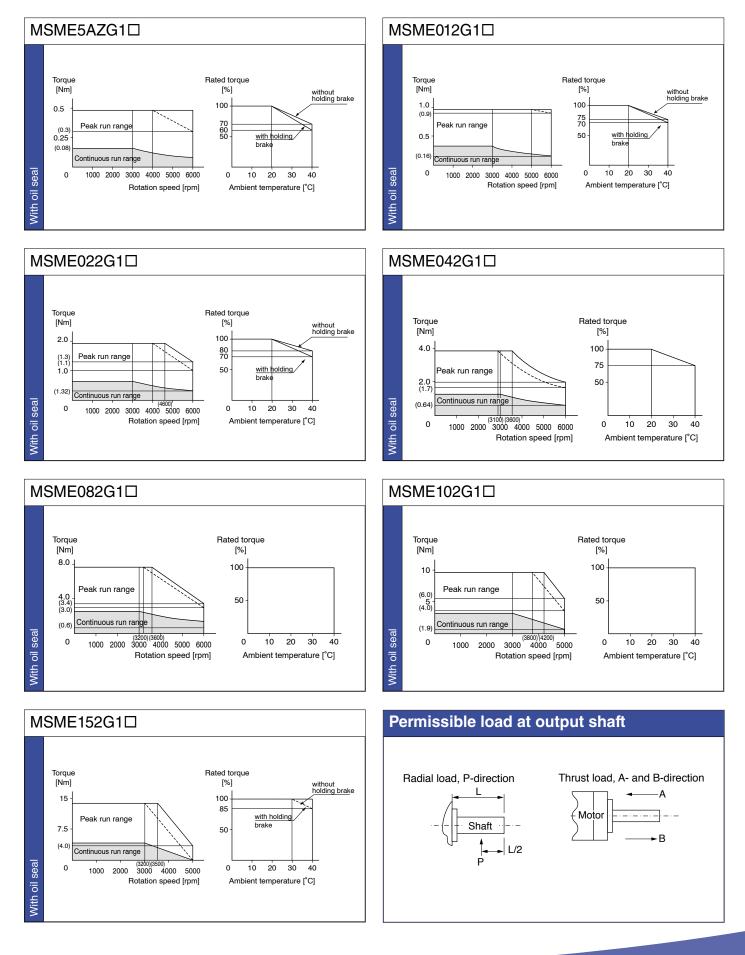
			MSME (low i	inertia) 50–1500W	200V AC			•		
Motor		MSME5AZG1D	MSME012G1D	MSME022G1D	MSME042G1D	MSME082G1D	MSME102G1D	MSME152G1D		
Rated power W		50	100	200	400	750	1000	1500		
Required power kVA			0.5		0.9	1.3	1.8	3.3		
Rated current A		1		1.5	2.4	4.1	6.6	8.2		
Max. current A o-p		4	.7	6.5	10.2	17.4	28	35		
Rotational speed	Rated rotational speed				3000					
r/min	Max. rotational speed			6000			5	000		
Weight kg	Without holding brake	0.31	0.46	0.78	1.2	2.3	3.5	4.4		
L	With holding brake	0.51	0.66	1.2	1.6	3.1	4.5	5.4		
Torque Nm	Nominal	0.16	0.32	0.65	1.3	2.4	3.18	4.77		
	Maximal	0.48	0.95	1.91	3.8	7.1	9.55	13.3		
Encoder					-bit incremental er esolution: 1,048,57					
Braking resistor	With internal resistor				No limit					
frequency times/min	With external resistor	No limit								
Moment of inertia of	Without holding brake	0.025	0.051	0.14	0.26	0.87	2.03	2.84		
rotor (x10 ⁻⁴ kg · m ²)	With holding brake	0.027	0.054	0.16	0.28	0.97	2.35	3.17		
Recommended inertia between load and roto			Max	Max. 15:1						
	Temperature (without frost)		0–40°C							
Operating	Ambient humidity	20–85% RH (non-condensing)								
conditions	Altitude			Ма	x. 1000m above se	a level				
	Vibration				49m/s ²					
	pecifications (The hold									
Static friction torque N	lm		0.29		1.27	Min. 2.45		n. 7.8		
Engaging time ms			. 35		k. 50	Max. 70		ix. 50		
Releasing time ms			. 20		k. 15	Max. 20	Max. 15			
Excitation current A D		0	.3	0.	36	0.42	0.81	±10%		
Releasing voltage V D					Min. 1					
Excitation voltage V D	C				24 ±5%					
			Permissible lo	ad and thrust at ou	itput shaft					
During installation	Radial load,		47		92	686	-	980		
During operation	P-direction N*		3.6		45	392		190		
During installation	Axial thrust (push),		8		47	294		588		
During operation	A-direction N*		3.8		8	147		196		
During installation	Axial thrust (pull),		7.6		96	392	686			
During operation	B-direction N*	58	3.8	9	8	147	196			

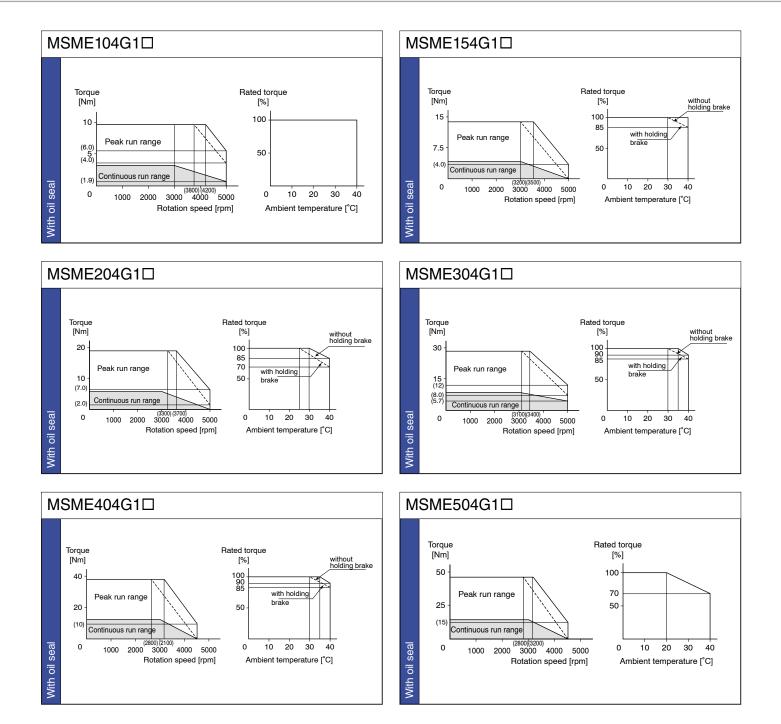
		MSME (low ine	rtia) 1000–5000W	400V AC					
Motor		MSME104G1D	MSME154G1D	MSME204G1D	MSME304G1D	MSME404G1D	MSME504G1D		
Rated power W		1000	1500	2000	3000	4000	5000		
Required power kVA		1.8	2.3	3.3	4.5	6.8	7.5		
Rated current A		3.3	4.2	5.7	9.2	9.9	12		
Max. current A o-p		14	18	24	39	42	51		
Rotational speed r/min	Rated rotational speed				000				
Tiotational speed infinit	Max. rotational speed		-	000			500		
Weight kg	Without holding brake	3.5	4.4	5.3	8.3	11	14		
Weight kg	With holding brake	4.5	5.4	6.3	9.4	12.6	16		
Torque Nm	Nominal	3.18	4.77	6.37	9.55	12.7	15.9		
loique Mili	Maximal	9.55	13.3	19.1	28.6	38.2	47.7		
Encoder				20-bit incren	nental encoder				
Lincodel					1,048,576 p/r				
Braking resistor frequency	With internal resistor				limit				
times/min	With external resistor				limit				
Moment of inertia of rotor	Without holding brake	2.03	2.84	3.68	6.5	12.9	17.4		
(x10 ⁻⁴ kg · m ²)	With holding brake	2.35	3.17	4.01	7.85	14.2	18.6		
Recommended inertia ratio betwee	en load and rotor			Max	c. 15:1				
	Temperature (without frost)		0–40°C						
Operating conditions	Ambient humidity	20–85% RH (non-condensing)							
Operating conditions	Altitude	Max. 1000m above sea level							
	Vibration			49	m/s²				
Holding brake specifications	(The holding brake is engage	d when the power	for the servo driver	is shut off. Do not	use the holding bral	ke when the motor	is in motion.)		
Static friction torque Nm			Min. 7.8		Min. 11.8	Min	. 16.2		
Engaging time ms			Max. 50		Max. 80	Max	<. 110		
Releasing time ms			Ma	ax. 15		Ma	x. 50		
Excitation current A DC			0.81	±10%		0.9	±10%		
Releasing voltage V DC			·	M	in. 2				
Excitation voltage V DC				24	±10%				
		Permissible loa	d and thrust at out	put shaft					
During installation	980								
During operation		4	190		7	84			
During installation				Ę	588				
During operation	A-direction N*	196 343							
During installation	Axial thrust (pull),			6	686				
During operation	B-direction N*			196		3	43		

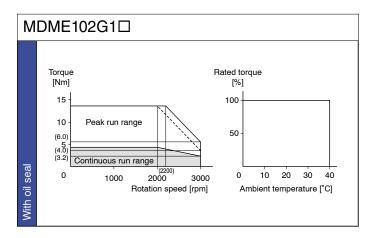
*For details, please refer to page 19.

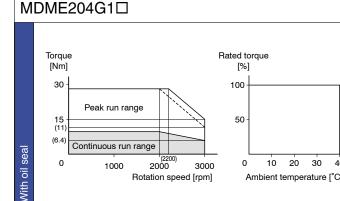
	MDME (middle iner	rtia) 1000–1500W 200V AC				
Motor	· · · ·	MDME102G1	MDME152G1D			
Rated power W		1000	1500			
Required power kVA		1.8	2.3			
Rated current A		5.7	9.4			
Max. current A o-p		24	40			
	Rated rotational speed	2000				
Rotational speed r/min	Max. rotational speed	3000				
	Without holding brake	5.2	6.7			
Weight kg	With holding brake	6.7	8.2			
Taurus Nes	Nominal	4.77	7.16			
Torque Nm	Maximal	14.3	21.5			
Encoder	·	20-bit increment resolution: 1.04				
	With internal resistor	No lim				
Braking resistor frequency times/min	With external resistor	No lim				
Moment of inertia of rotor	Without holding brake	4.6	6.7			
$(x10^{-4} \text{ kg} \cdot \text{m}^2)$	With holding brake	5.9	7.99			
Recommended inertia ratio between lo		0.0 Max. 10				
	Temperature (without frost)	0-40°C				
	Ambient humidity	20–85% RH (non-	-			
Operating conditions	Altitude	Max. 1000m above sea level				
	Vibration	49m/s ²				
Holding t	prake specifications (The holding brake is	s engaged when the power for the servo driver ake when the motor is in motion.)				
Static friction torgue Nm		Min. 4.9	Min. 13.7			
Engaging time ms		Max. 80	Max. 100			
Releasing time ms		Max. 70	Max. 50			
Excitation current A DC		0.59 ±10%	0.79 ±10%			
Releasing voltage V DC		Min. 2				
Excitation voltage V DC		24 ±10	%			
	Permissible load	and thrust at output shaft				
Juring installation Radial load,		980				
During operation P-direction N*		490				
During installation	Axial thrust (push),	588				
During operation	A-direction N*	196				
During installation	Axial thrust (pull),	686				
During operation	B-direction N*	196				

			MDME (middle inertia) 2000-	15000W 400V AC				
Motor		MDME204G1D	MDME304G1	MDME404G1	MDME504G1	MDME754G1	MDMEC14G1	MDMEC54G1	
Rated power W		2000	3000	4000	5000	7500	11000	15000	
Required power kVA		3.3	4.5	6.8	7.5	11	17	22	
Rated current A		5.9	8.7	10.6	13	22	27.1	33.1	
Max. current A o-p		25	37	45	55	83	101	118	
Rotational speed	Rated rotational speed		2	2000			1500		
r/min	Max. rotational speed		3	3000			2000		
Weight kg	Without holding brake	8	11	15.5	18.6	36.4	52.7	70.2	
Weight kg	With holding brake	9.5	12.6	18.7	21.8	40.4	58.9	76.3	
	Nominal	9.55	14.3	19.1	23.9	47.8	70	95.5	
	Maximal	28.6	43.0	57.3	71.6	119	175	224	
Encoder					20-bit incremental enc resolution: 1,048,576				
Braking resistor	With internal resistor		No limit		120		No limit		
frequency times/min	With external resistor				No limit				
Moment of inertia of	Without holding brake	8.72	12.9	37.6	48	101	212	302	
rotor (x10 ⁻⁴ kg · m ²)	With holding brake	10	10 14.2		48.8	107	220	311	
Recommended inertia load and rotor	a ratio between		Ма	x. 10:1	·	Max. 1:1			
	Temperature (without frost)			0-40°C					
Operating conditions	Ambient humidity			2	20-85% RH (non-condensing)				
	Altitude				Max. 1000m above sea	level			
	Vibration		49	9m/s²			24.5m/s ²		
Holdir	ng brake specifica	tions (The holding bral	ke is engaged when th	ne power for the servo	driver is shut off. Do n	ot use the holding brak	e when the motor is in	motion.)	
Static friction torque N	Im	Min. 13.7	Min. 16.2	M	in. 24.5	Min. 58.8	N	lin. 100	
Engaging time ms		Max. 100	Max. 110	N	lax. 80	Max. 150	M	ax. 300	
Releasing time ms			x. 50		lax. 25	Max. 50		ax. 140	
Excitation current A D	С	0.79 ±10%	0.90 ±10%		3 ±10%	1.4 ±10%	1.08 ±10%		
Releasing voltage V D	-		1/-		Min. 2				
Excitation voltage V DC					24 ±5%				
		1	Permi	ssible load and thrust	at output shaft				
During installation Radial load,		c	180		1666	2058		4508	
During operation P-direction N*			90		784	1176		2254	
During installation	Axial thrust (push).		88		784	980			
During operation	A-direction N*		96		343	490	686		
During installation	Axial thrust (pull),		86		980	1176		1764	
During operation	B-direction N*		96		343	490		686	
During operation	D-UIICCIIUTI N	1	30		0-10	430		000	

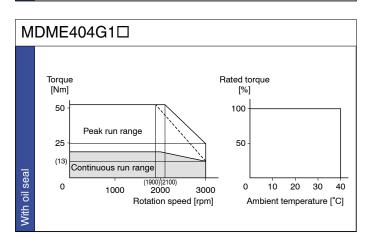

*For details, please refer to page 19.

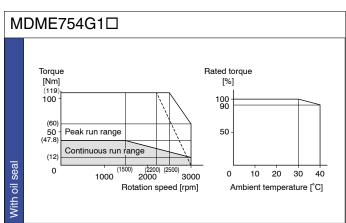

MINAS A5 motor specifications

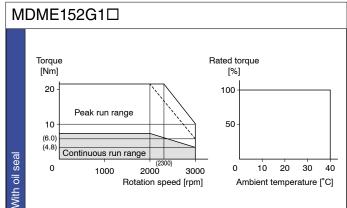

		MHMD (high inertia) 200–750W 2	200V AC					
Motor		MHMD022G1	MHMD042G1	MHMD082G1				
Rated power W		200	400	750				
Required power kVA		0.5	0.9	1.3				
Rated current A		1.6	2.6	4				
Max. current A o-p		6.9	17					
Rotational speed	Rated rotational speed		3000					
r/min	Max. rotational speed		000	4500				
Weight kg	Without holding brake	0.96	1.4	2.5				
weight kg	With holding brake	1.4	1.8	3.5				
Torque Nm	Nominal	4.77	7.16	9.55				
	Maximal	14.3	21.5	43.0				
Encoder			20-bit incremental encoder resolution: 1,048,576 p/r					
Braking resistor	With internal resistor		No limit					
frequency times/min	With external resistor		No limit					
Moment of inertia of	Without holding brake	0.42	0.67	1.51				
rotor (x10 ⁻⁴ kg · m ²)	With holding brake	0.45	1.61					
Recommended inertia	a ratio between load and rotor	Max	Max. 20:1					
	Temperature (without frost)	0–40°C						
Operating condi-	Ambient humidity	20–85% RH (non-condensing)						
tions	Altitude		Max. 1000m above sea level					
	Vibration		49m/s ²					
Holdin	ng brake specifications (The holding brake is en	ngaged when the power for the servo driver is shut off. Do not use the holding brake when the motor is in motion.)						
Static friction torque N	lm	Min.	. 1.27	Min. 2.45				
Engaging time ms		Max	ĸ. 50	Max. 70				
Releasing time ms			ĸ. 30	Max. 20				
Excitation current A D		0.	36	0.42				
Releasing voltage V D			Min. 1					
Excitation voltage V D	C		24 ±5%					
		Permissible load and thrust at out	put shaft					
During installation	Radial load,		92	686				
During operation	P-direction N*		45	392				
During installation	Axial thrust (push),		47	294				
During operation	A-direction N*	9	147					
During installation	Axial thrust (pull),	1	392					
During operation	B-direction N*	9	8	147				

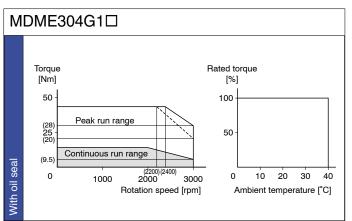

		Mł	HME (high inertia) 10	000-7500W 400V AC				·			
Motor		MHME104G1	MHME154G1	MHME204G1	MHME304G1D	MHME404G1	MHME504G1D	MHME754G1D			
Rated power W		1000	1500	2000	3000	4000	5000	7500			
Required power kVA	A	1.8	2.3	3.3	4.5	6.8	7.5	11			
Rated current A		5.7	9.4	11.1	16	21	25.9	44			
Max. current A o-p		24	165								
Rotational speed	Rated rotational speed			2000)			1500			
r/min	Max. rotational speed				3000						
Weight kg	Without holding brake	6.7	8.6	12.2	16	18.6	23	42.3			
weight kg	With holding brake	9.1	10.1	15.5	19.2	21.8	26.2	46.2			
Torque Nm	Nominal	4.77	7.16	9.55	14.3	19.1	23.9	47.8			
Torque Nm	Maximal	14.3	21.5	43.0	28.6	57.3	71.6	119			
Encoder					t incremental enco plution: 1,048,576 p						
Parlin e ar sister	With internal resistor	83	22	45	19	17	10	No limit			
Braking resistor frequency times/min	With external resistor	No limit	130	142	42	125	76	No limit			
Moment of	Without holding brake	24.7	37.1	57.8	90.5	112	162	273			
inertia of rotor (x10 ⁻⁴ kg · m ²)	With holding brake	26	38.4	59.6	92.1	114	164	279			
Recommended iner	tia ratio between load and rotor		Max. 5:1								
	Temperature (without frost)	0-40°C									
Operating	Ambient humidity	20-85% RH (non-condensing)									
conditions	Altitude										
	Vibration		24.5m/s ²								
Hold	ding brake specifications (The holding bra	ke is engaged whe	en the power for the	servo driver is shut of	f. Do not use the h	olding brake when	the motor is in mot	ion.)			
Static friction torque	Nm	Min. 4.9	Min. 13.7			Min. 58.8					
Engaging time ms		Max. 80	Max. 100			Max. 150					
Releasing time ms		Max. 70	Max. 50		Max.	25		Max. 50			
Excitation current A	DC	0.59 ±10%	0.79 ±10%		1.3 ±1	10%		1.41 ±10%			
Releasing voltage V	DC				Min. 2			·			
Excitation voltage V	DC				24 ±5%						
		Pe	ermissible load and	hrust at output shaft							
During installation	Radial load,		980			2058					
During operation	P-direction N*		190		78- 78-			1176			
During installation			588			980					
During operation	A-direction N*		196			490					
During installation	Axial thrust (pull),		586		98			1176			
During operation	B-direction N*	· ·	196		34	3		490			

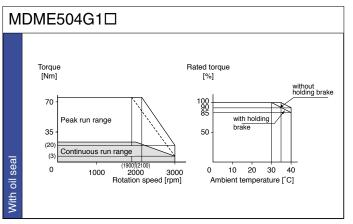
*For details, please refer to page 19.

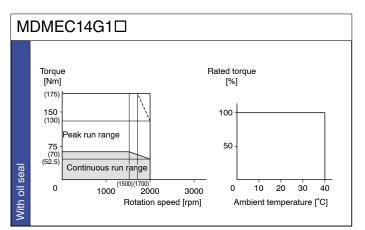


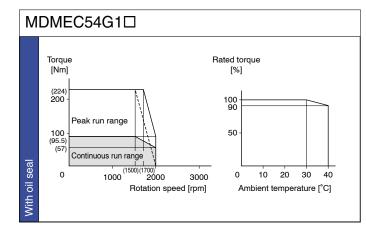


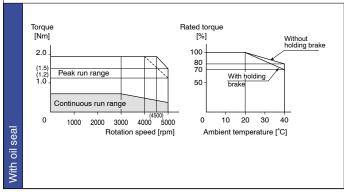


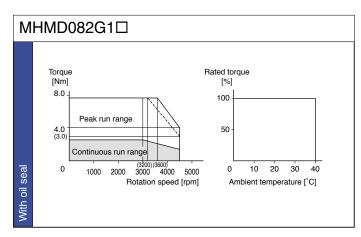

Rotation speed [rpm]

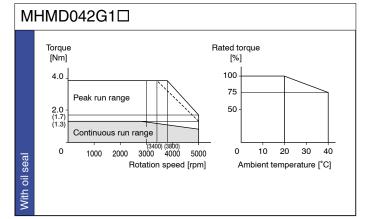

Ambient temperature [°C]

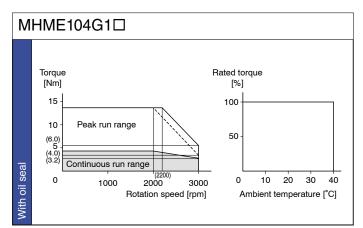


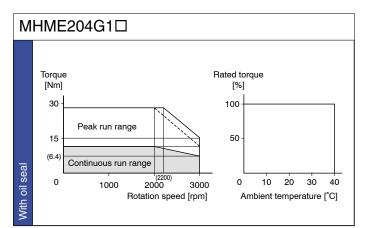


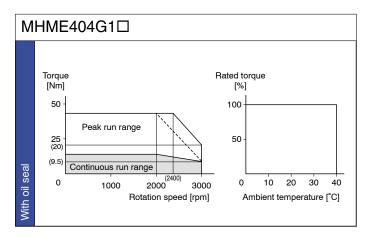


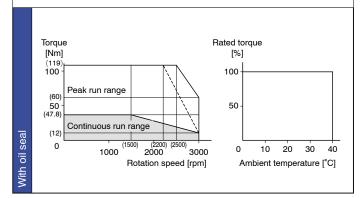


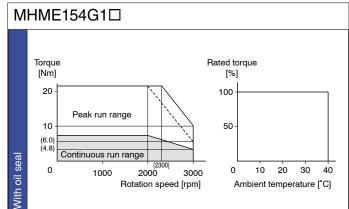


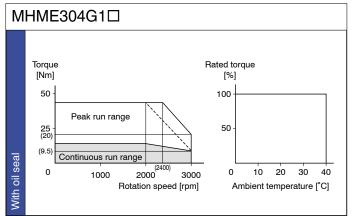


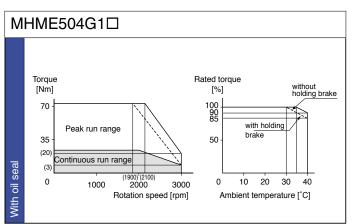

MHMD022G1□



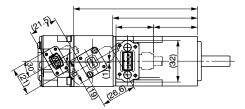


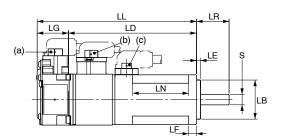




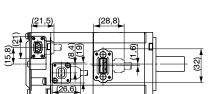


MHME754G1□

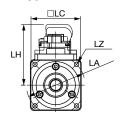


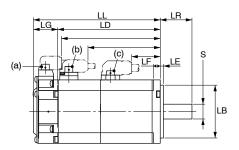


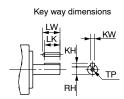
23


MINAS A5 motor dimensions

50W-100W

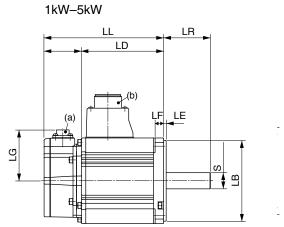


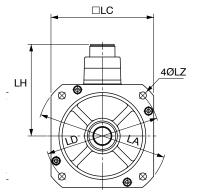




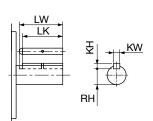
50W–750W

a) Encoder connector

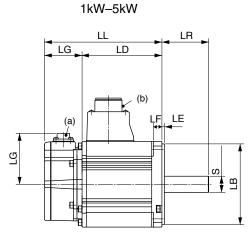

b) Brake connector

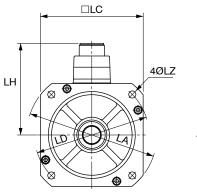

c) Motor connector

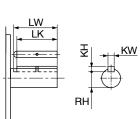
				MSN	/IE (Iow ine	rtia) 50–7	50W 200V A	С						
Rated pov	ver	W	50	0	10	00	20	0	4(00	75	50		
Motor		Туре	MSME5	AZG1□	MSMEC)12G1□	MSME0	22G1□	MSMED	42G1□	MSMEC	82G1□		
Encoder							D-bit increme resolution: 1							
Motor with holding br			Without	With	Without	With	Without	With	Without	With	Without	With		
LL		mm	72	102	92	122	79.5	116	99	135.5	112	148.2		
LR		mm		2	25			3	30		3	5		
S		mm		Ø 8	3 h6		Ø 11	l h6	Ø 14 h6		Ø 1	9 h6		
LA		mm		Ø 45	5 ±0.2			Ø 70) ±0.2		Ø 90	±0.2		
LB		mm		Ø 3	0 h7			Ø 5	50 h7		Ø 7	0 h7		
LC		mm		3	8			6	60		8	0		
LD		mm	48	78	68	98	56.5	93	76	112.5	86.2	122.2		
LE		mm	3					3		3				
LF		mm		(6		6.5			8	3			
LG		mm		2	24			2	23		2	6		
LH		mm		(46	5.6)			(5)	2.5)		(61	l.6)		
LN		mm		4	13				-			-		
LZ		mm		4- Ø	ð 3.4		4- Ø 3.4 4- Ø 4.5			4.5	4- (Ø 6		
	LW	mm		1	4		2	0	2	5	2	5		
	LK	mm		12	2.5		1	8	22	2.5	2	2		
Kouwou	KW	mm		3	h9		4	า9	5	h9	6	h9		
Key way	KH	mm		:	3		4 5		5	6	6			
	RH	mm		6	.2		8.	5	1	1	15	5.5		
	TP	mm		M3, d	epth 6		M4, de	epth 8	M5, d	epth 8	M5, depth 10			
Weight		kg	0.32	0.53	0.47	0.68	0.82	1.30	1.2	1.7	2.3	3.1		
Encoder c	ables	Туре					MFECA0							
Motor cab	le	Туре					MFMCA0							
Brake cab	les	Туре					MFMCB0							
Connecto	r set	Туре				DVC	PM20035 (r	notor+enc	oder)					


= Length

10 = 1m




Key way dimensions

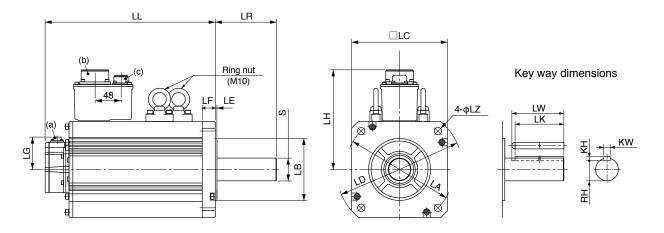


a) Encoder connector b) Motor connector

Rated powe	ar	kW	1.0	1.5	V 200VAC, 1kW-5 2.0	3.0	4.0	5.0		
naleu powe	200V AC		I.0 MSME102G1□	MSME152G1D	2.0	5.0	4.0	5.0		
Motor	200V AC 400V AC	Туре	MSME102G1	MSME152G1	 MSME204G1□	 MSME304G1□	 MSME404G1□	MSME504G1		
	Without									
	holding brake	mm	141	159.5	178.5	190	208	243		
LL	With holding brake	mm	168	186.5	205.5	215	233	268		
LR		mm		55		55	65			
S		mm		Ø 19 h6		Ø 22 h6	Ø 22 h6 Ø 24 h6			
LA		mm		Ø 135		Ø 162	Ø 162 Ø 165			
LB		mm		Ø 95 h7			Ø 110 h7			
LC		mm		100		120	1:	30		
LD		mm		Ø 115			Ø 145			
LE		mm		:	3			6		
LF		mm		10		12	12 12			
LG		mm		(60)			(60)			
LH		mm		(101)		(113)	3) (118)			
LZ		mm			4 9	Ø 9				
	LW	mm		4	5		-	5		
	LK	mm		42		41	-	51		
Key way	KW	mm		6 h9			8 h9			
	КН	mm		6			7			
	RH	mm		15.5		18	2	20		
Maight	Without holding brake	kg	3.5	4.4	5.3	8.3	11	14		
Weight	With holding brake	kg	4.5	5.4	6.3	9.4	12.6	16		
Encoder ca	bles	Туре		L	MFECA0		1			
Motor cable)	Туре	Γ	MFMCD0002GCI	D		MFMCA0002GC	Г		
Motor cable	200V AC	Туре)					
with holding brake	400V AC	Туре	ľ)	MFMCA0□□2HCT				
Connector :	set	Туре	DV0PI	M20036 (motor+er	coder)	DV0PM20037 (motor+encoder)				
Connector s holding bra		Туре	DV0PM20038	(motor+encoder+	holding brake)	brake) DV0PM20039 (motor+encoder+holding brake)				

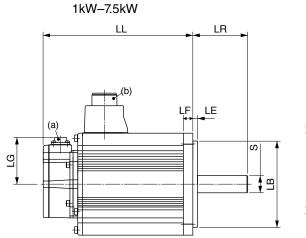
Key way dimensions

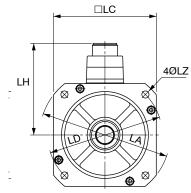
a) Encoder connector

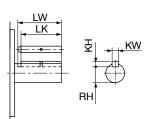

b) Motor connector

			MDME (midd	lle inertia) 1kW–1.	5kW 200VAC, 2-5	5kW 400VAC				
Rated power kW 1.0 1.5 2.0 3.0 4.0 5.0										
Motor	200V AC	Tura	MDME102G1□	MDME152G1□	-	-	-	-		
WOLOF	400V AC	Туре	-	-	MDME204G1□	MDME304G1□	MDME404G1□	MDME504G1□		
LL	Without holding brake	mm	138	155.5	173	208	177	196		
	With holding brake	mm	163	180.5	198	233	202 221			
LR		mm	5	5	55	65	7	0		
S		mm		Ø 22 h6		Ø 24 h6	Ø 3	5 h6		
LA		mm		Ø	165		Ø	233		
LB		mm		Ø 11	0 h7		Ø 114	4.3 h7		
LC		mm		10	30		11	76		
LD		mm		Ø	145		Ø 200			
LE		mm		(6		3.2			
LF		mm		1	18					
LG		mm			t.					
LH		mm	(1	16)	(14	40)				
LZ		mm		4 x	4 x Ø	ý 13 .5				
	LW	mm		4	5	5				
	LK	mm	4	1	5	1	5	0		
Key way	KW	mm		8	h9		10	h9		
	КН	mm		-	7			3		
	RH	mm	1	8	2	0	3	0		
Maight	Without holding brake	kg	5.2	6.7	8.0	11.0	15.6	18.6		
Weight	With holding brake	kg	6.7	8.2	9.5	12.6	18.7	21.8		
Encoder cable	s	Туре			~					
Motor cable		Туре	1		MFMCA0DD2GCT					
Motor cable with	200V AC	Туре								
holding brake	400V AC	Туре	MFMCE0□□2HCD				MFMCA002HCT			
Connector set		Туре	DV0PI	M20036 (motor+en	coder)	DV0PM20037 (motor+encoder)				
Connector set with holding be		Туре	DV0PM20038	(motor+encoder+	holding brake)	DV0PM20039	(motor+encoder+	holding brake)		

____ = Length


10 = 1m 50 = 5m




- a) Encoder connector
- b) Brake connector
- c) Motor connector

	MDME (middle	inertia) 7.5	kW–15kW 400VA	.C			
Rated power		kW	7.5	11	15		
Motor	400V AC	Туре	MDME754G1	MDMEC14G1	MDMEC54G1		
LL	Without holding brake	mm	312	316	384		
	With holding brake	mm	337	364	432		
LR		mm	113	1.	16		
S		mm	Ø 42 h6	Ø 5	5 h6		
LA		mm	Ø 233	Ø	268		
LB		mm	Ø 114.3 h7	Ø 20)0 h7		
LC		mm	176	22	20		
LD		mm	Ø 200	Ø	235		
LE		mm	3.2		1		
LF		mm	24	32			
LG		mm	(60)				
LH		mm	(184)	84) (205)			
LZ		mm		4 x ∅ 13.5			
	LW	mm	96	9	8		
	LK	mm		90			
Key way	KW	mm	12 h9	16	h9		
	КН	mm	8	1	0		
	RH	mm	37	4	9		
	Without holding brake	kg	36.4	52.7	70.2		
Weight With holding brake		kg	40.4	58.9	76.3		
Encoder cables	Туре		MFECA000GTE)			
Motor cable with holding brake	Туре	To be	used with DV0PM	20056			
Connector set	Туре	DV0PI	M20056 (motor+en	coder)			
Connector set with holding brake		Туре	DV0PM20057	(motor+encoder+	holding brake)		

Key way dimensions

a) Encoder connector

b) Motor connector

				MHME (medium	n inertia) 1kW-	7.5kW 400VAC						
Rated power		kW	1.0	1.5	2.0	3.0	4.0	5.0	7.5			
Motor	400V AC	Туре	MHME104G1	MHME154G1	MH- ME204G1□	MHME304G1□	MH- ME404G1□	MH- ME504G1□	MH- ME754G1□			
LL	Without holding brake	mm	173	190.5	177	196	209.5	238.5	357			
LL	With holding brake			382								
LR		mm	7	0		80			113			
S		mm	Ø 2	2 h6		Ø 35	h6		Ø 42 h6			
LA		mm	Ø	165			Ø 233					
LB		mm	Ø 11	0 h7			Ø 114.3 h7					
LC		mm	1:	30			176					
LD		mm	Ø	145			Ø 200					
LE		mm		3								
LF		mm	1	2		18	18			18		24
LG		mm				(60)						
LH		mm	(1	(116) (140)				(184)				
LZ		mm	4 x	Ø 9			4 x ∅ 13.5					
	LW	mm	4	5		55			96			
	LK	mm	4	1		50			90			
Key way	KW	mm	8	h9		10 h	9		12 h9			
	КН	mm	-	7								
	RH	mm	1	8		30			37			
Maight	Without holding brake	kg	6.7	8.6	12.2	16	18.6	23	42.3			
Weight	With holding brake	kg	8.1	10.1	15.5	19.2	21.8	26.2	46.2			
Encoder cabl	-	Туре)		1			
Motor cable		Туре	М	FMCD0002GC	D	MFMCE002GCD	MFMCA0	□□2GCD	_			
Motor cable with holding	200V AC	Туре	М	FMCA0□□2HC	D	MFMCA0002HCT						
brake	400V AC	Туре	М	FMCE002HC	D							
Connector se	t	Туре	DV0PM	20036 (motor+e	ncoder)	DV0PM20	0037 (motor+en	coder)	DV0PM20056			
Connector se holding brake	onnector set with					-			DV0PM20057			

= Length

10 = 1m

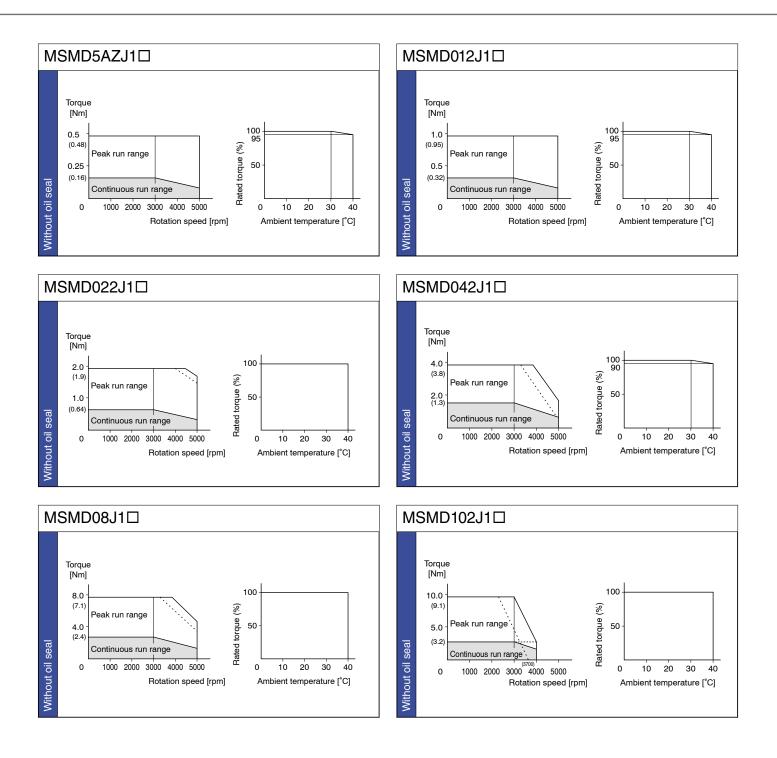
50 = 5m

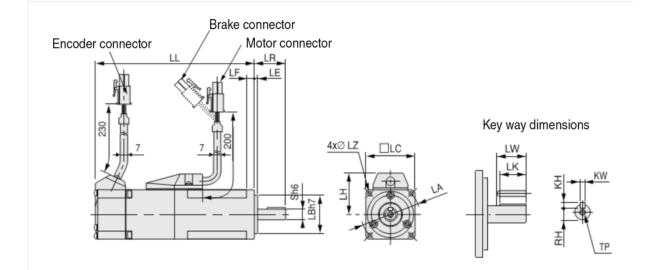
MINAS LIQI

MINAS LIQI, the simple and cost-effective servo drive solution from Panasonic. Especially for dynamic applications MINAS LIQI offers many advantages as far as reliability, speed, and precision is concerned compared to stepping motors, asynchronous motors or pneumatic solutions. As for the MINAS A5 series, the PANATERM software and the MINAS SELECTION TOOL assist users in setting up and configuring the MINAS LIQI series. The series is optimally suited for the processing industries involving food, packaging, printing, metals, and plastics.

Features

- Incremental encoder: 2500 pulses per revolution
- Response frequency: 1kHz bandwidth (velocity response)
- PANATERM V5.0: Free software for configuration and motion simulation via USB port
- Real-time autotuning function during operation
- Damping (1-200Hz) and notch filters (50-5000Hz)
- Rotary switch (RSW): to set the stiffness manually




			Dı	river (50W–1000)	AC 1-phase)						
Driver	MINAS LIQI	Туре		MBDJT2207	MBDJT2210	MCDJ	T3220				
Driver	Frame	mm		B (D: 55.5 x H	C (D: 65.5 x H	: 150 x W: 190)					
Rated power W			50	100	200	400	750	1000			
			M	otor (MSMD***J1	* low inertia)						
Motor		Туре	MSMD5AZJ1D	MSMD5AZJ1D MSMD012J1D MSMD022J1D MSMD042J1D MSMD082J1D MSMD102J1D							
Nominal torque (p	eak torque)	Nm	0.16 (0.48)	0.32 (0.95)	0.64 (1.91)	1.3 (3.8)	2.4 (7.1)	3.2 (9.5)			
Rated rotational s rotational speed)	peed (max.	r/min		3000		3000 (4500)	3000 (4000)				
Inertia (with holding brak	e)	x10 ⁻⁴ kg · m ²	0.025 (0.027)	0.051 (0.054)	0.14 (0.16)	0.26 (0.28)	0.87 (0.97)	1.16 (1.26)			
Encoder	Pulses per revolution	p/r	2500								
	Resolution		10,000								
Degree of protection IP65 (excluding shaft feedthrough and connectors)											

MINAS LIQI driver functions

				Frame	MINAS LIQI
		Main circuit		В	1-phase, 220–240V +5%, -10%, 50/60Hz
	Cumply voltage	Main circuit	200V	С	1-phase, 220-240V (+5%, -10%), 50/60Hz
	Supply voltage	Control circuit	2000	В	1-phase, 220-240V (+5%, -10%), 50/60Hz
				С	1-phase, 220-240V (+5%, -10%), 50/60Hz
		Temperature			0–50°C, storage temperature: -20 to +65°C (max. temperature 80°C for 72 h)
	Operating conditions	Ambient humidity			Operation and storage: 20–85% RH (non-condensing)
		Altitude			Max. 1000m above sea level
Basic specifications		Vibration			Max. 5.88m/s², 10–60Hz (no continuous use at resonance frequency)
ecif	Control method				IGBT sinusoidal PWM
ısic sp	Encoder	Incremental (default)			2500 p/r (resolution 10,000, serial incremental encoder)
Ba	Control signals		Input points		6 (multifunctional, customizable)
	Control signals		Output points		3 (multifunctional, customizable)
			Input points		2 (photocoupler, line driver)
	Pulse signals		Output points		3 line driver (A, B, and Z-phase) and 1 open collector (Z-phase)
	Interface		USB		Interface to PC, etc.
	Front panel				2 digital 7-segment LED displays, 2 digital rotary switches
	Braking resistor				External braking resistor only
	Dynamic brake				Built-in
	Control mode				Position control

				MINAS LIQI
		Control input		1. Clear deviation counter 2. Command pulse inhibition 3. Damping control switching
		Control output		Positioning complete etc.
			Line driver	500kpps
	Position control		Signal format	Differential input/square-wave pulse
		Pulse input	Electronic gear	Scaling of pulse frequency from 1/1000 – 1000 times
suo			Smoothing filter	Primary delay filter or FIR filter, customizable
Functions		Damping control		Available
Fu		Autotuning		Automatic adjustment of the servo controller's rigidity to the vibration behavior of the me- chanical parts and changes to the load
		Division of encoder feedb	ack pulse	Any value up to the max. number of encoder pulses
	Other features	Protective function	Error messages causing switch-off	Overvoltage, undervoltage, overspeed, over- load, overheat, overcurrent and encoder error, etc.
			Error messages requiring acknowledgement	Excessive position deviation, command pulse division error, EEPROM error, etc.
		Alarm history		Can be logged for reference

					MINA	S LIQI mo	otors (lov	ı inertia)		•		•		
Motor		Туре	MSMD5	5AZJ1□	MSMD	012J1□	MSMD)22J1□	MSMD	042J1□	MSMD	082J1□	MSMD	102J1□
Encoder	Resolution	p/r		10,000 (2500 p/r incremental)										
Motor wi	th/without hold	ding brake	With- out	With	With- out	With	With- out	With	With- out	With	th With- out With With-			With
LL		mm	72	102	92	122	79.5	116	99	135.5	112	149.2	127.2	164.2
LR		mm		2	5			3	0			3	5	
S		mm		ØB	3 h6		Ø 1 [.]	1 h6	Ø 1	4 h6		Ø 1	9 h6	
LA		mm		Ø 45	± 0.2			Ø 70	± 0.2			Ø 90	± 0.2	
LB		mm		Ø 3	0 h7			Ø 5	0 h7		Ø 70 h7			
LC		mm		3	8		60				8	0		
LE		mm			3									
LF		mm		6	5		6.5				8	3		
LZ		mm		4x Ø	ð 3.4		4x Ø 4					4x	Ø 6	
	LW	mm		1	4		2	0	2	5		2	5	
_	LK	mm		12.5			1	8	22	2.5		2	2	
Key way	KW	mm		3 h9			4	h9	5	h9		6	h9	
(ey	КН	mm		;	3		4	1	Į	5	6			
-	RH	mm	6.2			8.5 11		15.5						
	TP	mm		M3 de	epth 6		M4 de	epth 8	M5 de	epth 8	epth 8 M5 depth 10			
Weight		kg	0.32	0.53	0.47	0.68	0.82	1.30	1.2	1.7	2.3	3.1	2.8	3.6

Motor cables (motor-driver)

All dimensions are in mm

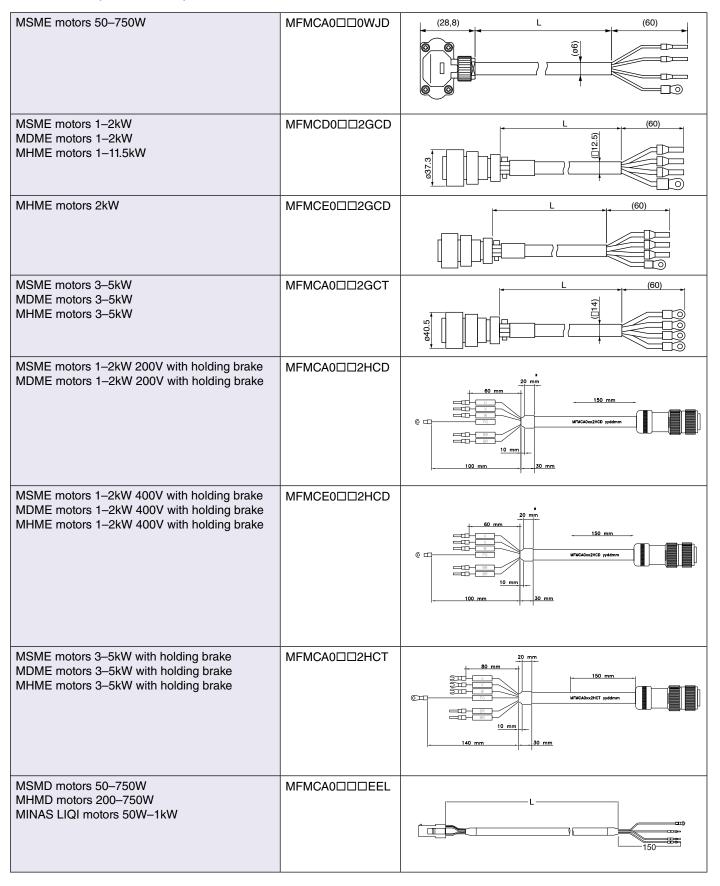


 Image: 10 = 1m

 Image: 10 = 1m

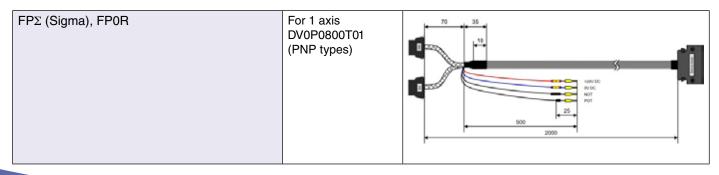
 Image: 10 = 1m

50 = 5m 050 = 5m

Brake cable (motor-driver)

All dimensions are in mm

MSME motors 50–750W	MFMCB0□□0PJT	90	L∬	
MSMD motors 50–750W MHMD motors 200–750W MINAS LIQI motors 50W–1kW	MFMCB0□□GET	50	∬ I	40


Encoder cable (motor-driver)

MSME motors 50–750W with 17/20-bit incremental encoder	MFECA 0WJD	
MSME, MDME, MHME motors 900W–15kW with 17/20-bit incremental encoder	MFECA DOGTD	
MINAS LIQI motors 50W–1kW MHMD motors 200W–750W	MFECA□□0EAM	
MSME motors 50–750W with 17-bit absolute encoder (battery box)	MFECA□□0GJE	
MSME, MDME, MHME motors 900W–15kW with 17-bit absolute encoder (battery box)	MFECADD0GTE	

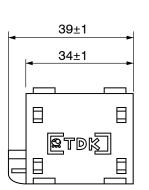
= Length	10 = 1m	50 = 5m
----------	---------	---------

Control cable (PLC-MINAS LIQI driver)

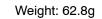
Direct connection to FP series PLCs

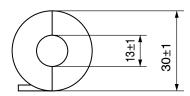
Control cable (PLC-MINAS A5 driver)

All dimensions are in mm

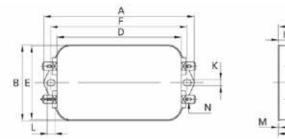

Direct connection to FP series PLCs

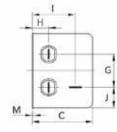
FPΣ (Sigma)	For 1 axis DV0P0980W-1 (NPN types) DV0P0982W-1 (PNP types)	
FPΣ (Sigma), FP0R	For 1 axis DV0P0988W-1 (PNP types) DV0P0989W-1 (NPN types)	PLC input PLC output
FPΣ (Sigma)	For 2 axes DV0P0981W-1 (NPN types) DV0P0983W-1 (PNP types)	
FPΣ (Sigma) Positioning unit	For 2 axes	
FP2SH Positioning units	DV0P0985W1 (transistor) DV0P0986W1 (line driver)	
FP7 Positioning unit	DV0P0976W-1 DV0P0975W-1	

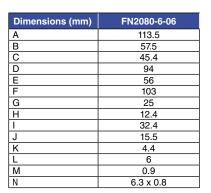

Product no.	Details/Comme	ents/Dimensions			
Control cable					
DV0P4360	50W–15kW	50-pin type	I/O cable X4, loose wires, 2m		
DV0P4360P	50W–15kW	50-pin type	I/O cable X4, loose wires, 2m, positi	ion control	
DV0P4360V	50W–15kW	50-pin type	I/O cable X4, loose wires, 2m, velocity control		
DV0PM20024CAB020	50W–15kW	8-pin type	Communication cable X2, RS485, RS232, loose wires, 2m		
DV0PM20025CAB020	50W–15kW	8-pin type	Safety cable X3, loose wires, 2m		
DV0P0800	50W–15kW	26-pin type	I/O cable X4, loose wires, 2m		
Programming cable					
CABMINIUSB5D	50W–15kW	USB			
Connector set for motion c	ontroller				
DV0P4350	50W–15kW	50-pin type	I/Os, X4		
DV0P0770	50W–15kW	26-pin type	I/Os, X4		
DV0PM20026	50W–15kW	-	External encoder connector X5		
Connector set encoder, mo	otor				
DV0P4380	50W–1kW	-	MINAS LIQI/A4		
DV0PM20035	50W-750W	-	MINAS A5, IP67		
DV0PM20036	1kW–2kW	_	MINAS A5 MSME, MDME, MHME 1–1.5kW		
DV0PM20036A	1kW–2kW	_	Angled type; MINAS A5 MSME, MDME, MHME 1–1.5kW		
DV0PM20037	2kW–5kW		MINAS A5 MSME 3–5kW, MDME, N		
DV0PM20037A	2kW–5kW	_	Angled type; MINAS A5 MSME 3-5		
Connector set encoder, mo	-	e		,	
DV0P4390	50W–1kW		MINAS LIQI/A4	MINAS LIQI/A4	
DV0PM20040	50W-750W		MINAS LIGHA		
DV0PM20038	1kW–2kW		MINAS A5, IF 07, Initially black connector kit		
DV0PM20038A	1kW–2kW		Angled type; MINAS A5 MSME, MDME, MDME, MHME 1–1.5kW		
DV0PM20039	2kW–5kW		MINAS A5 MSME 3–5kW, MDME, MHME		
DV0PM20039A	2kW-5kW		Angled type; MINAS A5 MSME 3–5		
EMC filter	2800-3800				
FN2080-6-06	50W–1000W	1-phase	250)/AC MINAS A5 50/0/-750/0/ M	INAS LIQI 50W-1000W	
FS21238-60-7	50W-750W	1-phase	250VAC, MINAS A5 50W–750W, MINAS LIQI 50W–1000W		
DV0P4220	1kW–1.5kW	1-3-phase	Footprint filter, 250VAC 500V AC		
FN3268-7-44	1kW–1.5kW	3-phase			
FN3268-16-44	4kW–5kW	3-phase	500V AC		
FN3258-30-33	15kW	3-phase	500V AC		
DV0P1460	50W–15kW	1-phase	400V AC Ferrite core, noise filter		
Braking resistors	0000-10K00	1-pilase			
BWD250100	50W–100W	1-phase	100Ω,100W, 600VAC		
BWD250072	200W–750W	1-phase	100Ω, 100W, 600VAC	110mmx80mmx15mm (LxWxD)	
BWD500035	1kW–1.5kW	1-phase	100Ω, 100W, 600VAC		
BWD500055	1kW–1.5kW	3-phase	120Ω, 200W, 600VAC	-	
BWD500100	2kW	3-phase	80Ω, 200W, 600VAC		
BWD600047	3kW–5kW	3-phase	40Ω, 240W, 600VAC	216mmx80mmx15mm (LxWxD)	
BWD600027	7.5kW	3-phase	40Ω, 240W, 600VAC	-	
BWD600027K02LV	11/15kW	o pridoc	40Ω, 240W, 600VAC	-	



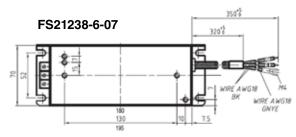
Ferrite core: DV0P1460

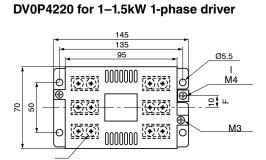


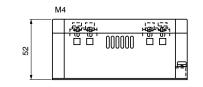


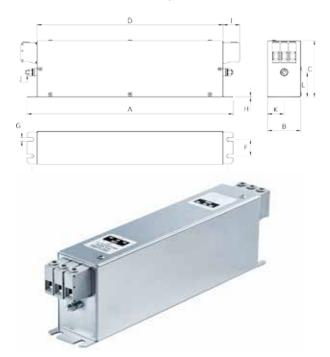

EMC filter

FN2080-6-06


FN2080-6-06 and FS21238-6-07 for MINAS A5 50-750W and MINAS LIQI 50-1000W 1-phase drivers

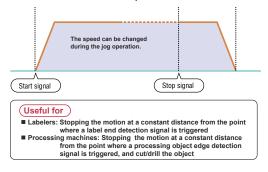





All dimensions are in mm.

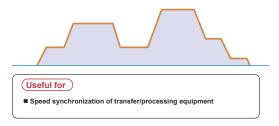
FN3268-7-44 for 1-3kW 3-phase driver, FN3268-16-44 for 4-5kW 3-phase driver

Dimensions (mm)	FN3268-7-44	FN3268-16-44			
A	190	250			
В	40 45				
С		70			
D	160	220			
E	180	235			
F	20	25			
G	4.5 5.4				
Н		1			
1		22			
J	M5				
К	20	22.5			
L	29.5				

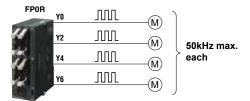

Туре	FP7	FP2SH
Features		
	Modular high-performance PLC Scan time of 11ns/step Program capacity of 196k steps Additional program capacity with SDHC memory card 	Modular high-performance PLC Scan time of 1ms for 20k steps As a high-performance PLC with fast scan times ideally suited for electronic device manufacturing
	 Batteryless data backup Ethernet 100BASE-TX/10BASE-TX Expandable with up to 16 units for different applications 	 High program capacity of 120k steps 32k, 60k step type also available Compatible with Small PC Cards, which serve as a program backup or extended memory for processing a large volume of data
		8192 I/O points max. (remote I/O system)

Туре	FPΣ (Sigma)	FP0R
Features	 Very compact high-performance PLC reliably supports the control of higher speed equipment with more functions featured Excellent basic performance, including program capacity of 32k steps, operation speed of 0.32µs/step and 384 I/O points Built-in 2-axis 100kHz pulse output capable of interpolation control Positioning units capable of controlling network motion controllers Can be equipped with up to 3 ports for program controlled communication without expansion unit Compatible with PROFIBUS, DeviceNet, CANopen and other open field networks 	 Pocket-size ultracompact controller ideal for use in extremely narrow spaces Ultrahigh processing speed of 80ns/step within a range of 0 to 3000 steps Program capacity from 16k–32k steps 10–128 I/Os Up to 24 thermocouple input points connectable for multipoint temperature control Multiaxis control for up to 4 axes available without expansion units Batteryless backup of all data

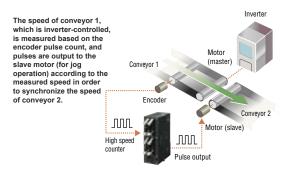
Туре	FP-X	FP-X0
Features		
	 High-performance compact terminal-block type controller.Wide selection of add-on cassettes allows space saving use of the controller for a variety of purposes Up to three add-on cassettes can be attached to the top of the control unit. The unit is of the terminal block type, but is space saving and allows a variety of applications Ethernet cassette available for data collection Built-in 4-axis pulse output. Two axes for linear interpolation Comment memory for simple maintenance work USB port for direct connection to a PC 	Entry level, compact, multifunctional PLC Max. 216 I/Os Combined relay and transistor output (NPN) types 2 analog input points and a clock/calendar function Max. 2 serial ports: 1 x RS232C, 1 x RS485 Program capacity: from 2.5k to 8k steps Data registers: 2550 to 8192 words Ethernet TCP/IP, Modbus RTU, PLC Link Motion control functions


Jog positioning control (F171 instruction)

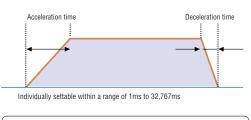
Motion can be started without a preset target value. When a stop signal is input, the target value is set, and the motion is slowed to a stop.


Changing the speed (F171 and F172 instructions)

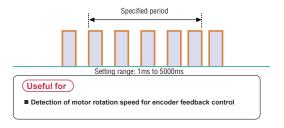
The target speed can be changed by an external signal input during the jog or trapezoidal control operation.

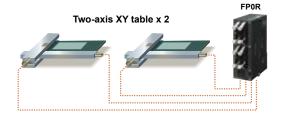


Built-in 4-axis pulse outputs (Transistor output type)


Multi-axis (4-axis) control is available without expansion units.

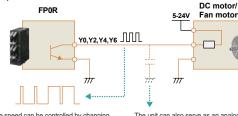
Simultaneously usable high speed counters (6 channels) and pulse outputs (4 channels)


Individual settings for acceleration and deceleration (F171, F172, F174, and F175 instructions)



Measuring the pulse frequency (F178 instruction)

Pulses input in a specified period by a single instruction are counted, and the frequency is calculated.



Two sets can simultaneously undergo two-axis linear interpolation (F175 instruction).

Built-in multipoint PWM outputs (4 channels)

A single FP0R unit can control the speeds of up to six DC motors/fan motors. It also can serve as an analog voltage output unit.

The speed can be controlled by changing the ON width of the PWM output within a range of 0.1% to 99.9%.

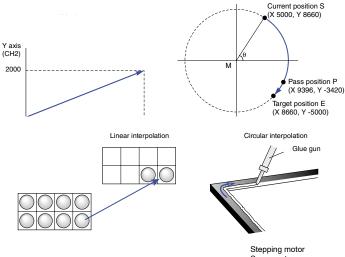
The unit can also serve as an analog voltage output unit (resolution: 1/1000) when a smoothing capacitor is inserted in the circuit.

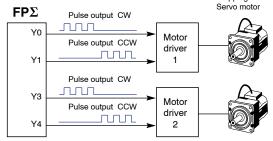
PLC	Product number	Voltage	Output	Input points (counters)	Output points (axes)
	AFP0RC16			8 (6)	8 (4)
0	AFP0RC32	24V DC	Transistor NPN	10 (0)	10 (4)
	AFP0RF32			16 (6)	16 (4)

Integrated linear and circular interpolation control

Interpolation functions enable simultaneous control of two axes. Applications that a compact PLC couldn't previously cope with are no longer a challenge. With linear interpolation, the PLC achieves a coordinated, linear movement of the two axes and controls the speed of each axis. Circular interpolation allows points to be smoothly traversed by arced paths for which the user specifies the orientation plane, the radius of curvature, motion path profile and direction of motion.

Simple and intuitive programming


For programming, a preset value table for starting speed, target speed, acceleration/deceleration time, and other factors will be used. Comes with dedicated instructions for each mode: trapezoidal control, home return, JOG operation, free table operation, linear interpolation and circular interpolation.

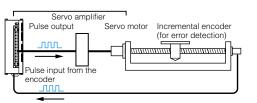

Clockwise/counter-clockwise output method

Reduce overall costs by designing systems that combine with servo motors and small stepping motors without support for Pulse and Sign method.

Smooth acceleration/deceleration

You can choose to set up to 60 steps of acceleration/deceleration. This allows for a smoother movement during long acceleration/ deceleration periods of stepping motors.

PLC	Product no.	Voltage Output		Input points	Output points (axes)
	FPGC32T2H	24V DC	Transistor NPN	16	16 (2)
	FPGC28T2H	24V DC	Transistor NPN	16	12 (2)


Home position return

Home search automatically reverses the motor rotation when the positive or negative limit switch is reached and searches for the home position or near home position.

Pulse output up to 100kHz

A high output frequency and a rapid 0.02ms start allow for a precise and very fast positioning.

Counts feedback pulses from the encoder to detect errors

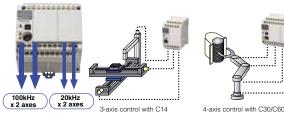
Positioning unit	Product no.	Output type	Output type
and a second sec	FPG-PP11	1-axis type	Transistor
1	FPG-PP21		
1 4	FPG-PP12	1-axis type	Line driver
	FPG-PP22	2-axis type	Line driver

For low cost multi-axis position control

Built-in 4-axis pulse output (transistor output type)

The transistor output type C14 comes with 3-axis while C30/C38 and C60 come with 4-axis pulse output inside the control unit. The multiaxis control, which previously required a higher-level PLC or additional positioning unit, or two or more PLC units, can now be achieved with only one FP-X transistor output type unit in a small space at a low cost. In addition, as this type does not require a pulse I/O cassette as needed for a relay output type, other function expansion cassettes such as communication or analog input can be attached for more diversified applications.

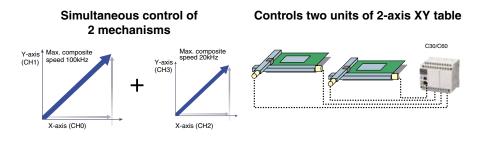
Characteristic	Specification
Max. pulse output	C14: 100kHz (CH0,1), 20kHz (CH2) C30, C38, C60: 100kHz (CH0,1), 20kHz (CH2,3)
Pulse output methods	CW/CCW, Pulse + direction
Function	Trapezoidal control, multi-stage operation, jog op- eration, origin return, 2-axis linear interpolation


2-axis control with expansion cassettes for relay output types

Pulse output up to 2-axis 80kHz is possible by loading 2 pulse I/O cassettes (AFPX-PLS). Also capable of performing 2-axis linear interpolation.

Note: Pulse I/O cassette does not work with transistor CPU output type.

XY table + processing head



Semiconductor wafer takeout blade

Linear interpolation simultaneously in 2 sets (transistor output type)

2-axis linear interpolation refers to moving a robot arm or equipment head diagonally on a straight line by simultaneously controlling 2 motor shafts. It is used for palletizing, component pick and place, XY table control, contour cutting of a PC board, etc. This makes the FP-X transistor output type the first compact pulse-output PLC capable of simultaneously controlling linear interpolation for 2 sets of axes. This unit dramatically expands the range of applications along with the added convenience of programming by using the linear interpolation command F175_PulseOutput_Linear.

2-axis linear interpolation with relay output types

By adding 2 pulse I/O cassettes (AFPX-PLS), linear interpolation is possible at the maximum composite speed of 80kHz. The command used for this unit is F175 PulseOutput Linear, the same as that for the transistor output types.

PLC	Product no.	Voltage	Output	Input points	Output points (axes)	PLC	Product no.	Voltage	Output	Input points	Output points (axes)																			
	AFPXC14TDJ	24V DC	Transistor				AFPXC60TDJ	24V DC	Transistor																					
	AFPXC14TJ	100-240V AC	NPN		- 8			_	_								AFPXC60TJ	100-240VAC	NPN	32	00 (4)									
	AFPXC14PDJ	24V DC	Transistor	-										-	-	-		-	-	-	-	-	-	-	-	0		6 (3)	0(3)	6 (3)
	AFPXC14PJ	100-240V AC	PNP	PNP	PNP	PNP	PNP											AFPXC60PJ	100-240V AC	PNP										
	AFPXC30TDJ	24V DC	Transistor	ransistor	- 16 14 (4)	- 16 14 (4)	- 16	- 16																						
	AFPXC30TJ	100-240V AC	NPN	NPN																										
	AFPXC30PDJ	24V DC	Transistor	nsistor								16	16	16	16	16 14 (4)														
	AFPXC30PJ	100-240V AC	PNP																											

FP7

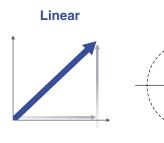
Features

- · Linear, circular, and spiral interpolation
- Max. speed 4Mpps (line driver), 500Kpps (transistor)
- Up to 600 points for each axis
- Integrated configurator software PM7 for parameter setting, JOG operation, home return, creation of data tables, etc.
- · Electronic cam control and electronic gear

Product no.	Function	Output	Output points (axes)
FP7-PP02T		Onen collector	2
FP7-PP04T	With	Open collector	4
FP7-PP02L	interpolation	line driver	2
FP7-PP04L]	Line driver	4

FP2SH

Positioning units (interpolation type)

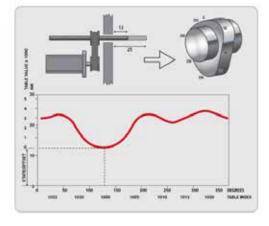

Features


- A pulse output of up to 4Mpps allows high-speed, high-precision positioning.
- 0.005ms high-speed drive reduces tact-time (start-up time is the time from reception of the CPU unit start-up command to release of the pulse output by the positioning unit).
- 4 axes per unit means versatility and saves space.
- The four types of S-curve acceleration/deceleration control allow for smooth startup and stoppage.
- Feedback pulse count function makes output pulse counting possible for encoders, etc.
- The pulse input function allows users to generate pulses manually to adjust machines, for example

Functions

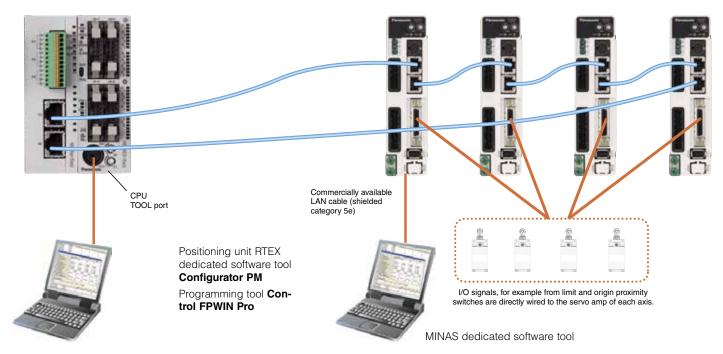
- · Linear, circular, and spiral interpolation
- Synchronization operations
- E-point control
- P-point control
- JOG operation function
- Smooth acceleration/deceleration: Linear or in 4 curves sine curve, square curve, cycloid curve, and cubic curve

Circle



Spiral

PLC	Product no.	Program- capacity	Other features
1	FP2C2LJ	32k steps	
	FP2C2J	60k steps	_
	FP2C2PJ	60k steps	IC memory card interface


Positioning unit	Product no.	Functions Output		Output points (axes)
	FP2-PP2T		Open collector	2
	FP2-PP4T	With	Open collector	4
	FP2-PP2L	Interpolation	Line driver	2
	FP2-PP4L			4
	FP2-PP21		Onen collector	2
	FP2-PP41	Without	Open collector	4
	FP2-PP22	Interpolation	Line driver	2
	FP2-PP42		Line driver	4

RTEX - the multiaxis Ethernet servo system

The RTEX positioning units support MINAS A5N network servo drives. A mutually optimized system consisting of PLC and motion controller greatly simplifies installation.

The main advantages of the RTEX positioning units:

- · Unique: Allows easy control of network servos with an ultra-compact PLC.
- · Allows highly accurate control of multi-axis positioning using high-speed 100Mbit/s communication.
- Minimization of wiring costs by using commercially available Ethernet cables. Position control of 2, 4, or 8 axes for motion controllers with Ethernet (RTEX) interface.
- · Dedicated tool software Control Configurator PM supports operations from setup to startup and monitoring.
- · Includes manual pulser input allowing support for precision teaching.

System configuration

No. of positioning units per RTEX unit FP Σ (Sigma): 2 units (16 axes) FP2SH: 32 units (256 axes)

Software Configurator PM for RTEX

The Configurator PM provides powerful yet simple full support ranging from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation monitoring. This saves time and makes commissioning considerably easier.

Product name	FPΣ (Sigma)	FP2SH	Number of axes	Output type	Product no.
	•		2		FPGPN2AN
		•	2		FP2SHPN2AN
Positioning units	•		4	DTEV Ethorpot	FPGPN4AN
(interpolation type)		•	4	RTEX Ethernet	FP2SHPN4AN
	•		0		FPGPN8AN
		•	8		FP2SHPN8AN
Control Configurator PM		AFPS66510			

Motion control libraries for Control FPWIN Pro (PLC)

The motion control library contains the most important function blocks, e.g. for relative or absolute positioning and for home returns with linear axes. Panasonic offers libraries for all motion control tasks.

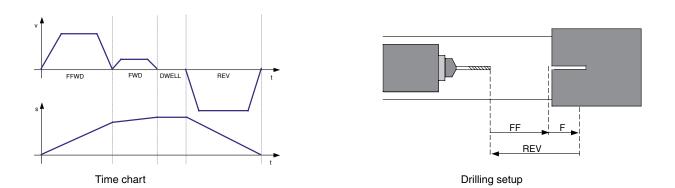
1. CPU Motion Control Library: Position control with FP series control units (FP0R, FP_Σ (Sigma), FP-X, FP7)

- 2.PP Motion Control Library: Positioning with PP motion control units (FPΣ (Sigma), FP2SH), FP7: Library included in PLC programming software Control FPWIN Pro
- 3. RTEX Motion Control Library: Positioning with RTEX motion control units (FP₂ (Sigma), FP2SH)

Advantages of PLC programs using the Motion Control Library Free – just download it from Panasonic's website Simple – easy programming and installation Efficient – ready-to-use function blocks, only set the parameters Consistent – compliant with IEC 61131-3 Universal – hardware-independent (works for every Panasonic PLC) Flexible – expandable for up to 256 axes Fast – short and easy commissioning (ready-to-use example programs) Download the software free of charge from Panasonic's website: Home→ Downloads→ SPS→ FPWIN Pro→ Library MC_CPU_Library Motion RTEX Motion Control Library

🚊 🔩 POEs: MC_PulseOutput_Library

- MC_HomeReturn_WithNearHome (FB)
- MC_HomeReturn_WithoutNearHome (FB)
- 🗄 📲 MC_Jog (FB)
- MC_MoveAbsolute (FB)
- MC MoveRelative (FB)
- MC_StopChannel (FB)
 - MC_Initial_Configuration [VOID] (FUN)


🖃 🔩 POEs: RTEX_Library_v1.3

RTEX_AMP_ReadParameter (FB)

Free of charge!

- RTEX_AMP_WriteEEPROM (FB)
- RTEX_AMP_WriteParameter (FB)
 - AxisInputError [BOOL] (FUN)
 - AxisSlotInputError [BOOL] (FUN)
 - CalculateIXIY [VOID] (FUN)



Direct access to servo drive parameters from the PLC

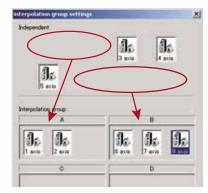
The libraries enable serial communication (RS232, RS485) between the FP series PLCs and the drivers of the MINAS A5 series.

The communication protocols for the drivers are also included in the libraries. The libraries allow full read and write access to the parameters. They also record the status and position data of the axes. All FP series PLCs come with an RS232 port (RS485 optional).

With RS232 connections, the first driver can be used as a gateway to downstream drivers so that all drivers can communicate with the PLC.

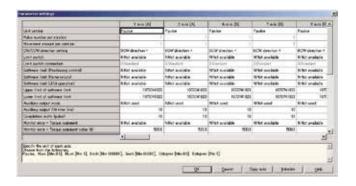
Download the software free of charge from Panasonic's website: Home→ Downloads→ SPS→ FPWIN Pro→ Library

Software Configurator PM for RTEX


The Configurator PM offers multiple support from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation. This saves time and makes commissioning considerably easier.

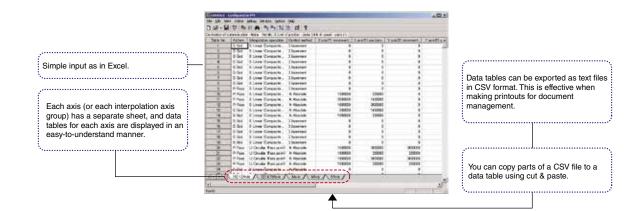
Axis settings

Check the axes to be used. Select the number of axes to be used.


🗸 1 axis	🔽 2 axis	🔽 3 axis	🔽 4 axis	QK	
🖓 5 exis	🖓 6 axis	17 (7 axis)	🕫 8 axis	Gancel	

Grouping of axes for interpolation operations is carried out simply by dragging and dropping the relevant axes.

Parameter settings


The details of the settings can be displayed in a table. Details on how to create settings for each category are explained in the box below.

Parameters can be copied between axes. In instances where many settings are shared among the axes, this can reduce the number of repeat inputs.

iource axis	3 axis	QK
Destination axis	A NAME	Gancel

Data table creation

Software Configurator PM for RTEX

Tool operations

- Each axis can be operated by test sequences independently of the operation modes (PROG and RUN) of the RTEX or FP control unit.
- JOG operation and teaching can be carried out easily to index positioning points. Test operation is possible without having to create a rudder program.

UAL INCOM

Tool operation	×
Tool operation	
Servo ON/OFF	1
<u>H</u> oming	i
<u>P</u> ositioning	j
<u>J</u> OG	
Teaching	
<u>E</u> xit	

Data monitor

- Data table no. during operation
- Auxiliary output
- · Current position, speed and vector
- Error code, warning code (errors and warnings can also be cleared)

Status monitor

- · Connection status of each axis
- · Model code of each motor amp and motor connected
- Servo lock status
- Near home input, limit input

Antilining	18.048	200	1.	2.614	- Kara	
Active Lable No			0			_
Aulies organise	* 1		0	— 1		
NP constants form	1029010		1000145			-
IN VALUE OF OF LAST DOWNSTON	18507 pylee	- 50	#195.pulse		anternal (10
Targe convert (N	28	27				
Actual speed from	d kowi 27		60			
Detection [Atte	404	- 1 ·	of corrected	for excepted	
Barta code			- 1			
	Contraction Class (2008)	from Ch	her Bru Che		Bea Case	
Warring spile						
Marving Clear		Hanting Clear Marining Clear		flyning Clear	Marring Clear	-
				50	5000	1
	Are Are	rd nare bate (sub	Febarrain RANDTILIOTE	Prosentaid RAIPTIEDEN	=	1
	Bra Jagi - Mata	noter (note model carls		Pessentato	2000 	
	Ann Ann Tama Ann	noter (node) readed carls 17	RAND TI LOTN BERDEALISED	705607455 8439711055 8129582810	=	
	Ara Astro Malas Taras Dapla Tar	nacht Lade racht Lade 7 10 Pae	RAND TUNOTE REMOTATIONS Free	Panastass BASP711055 BEEPSE2915 Fat		
	Bran Anter Mater Disease Stapped Sar Sar S	aacter (nadio noodad carbo 17 191 Millio Xadhat y	BASSTILLOTE BEESSTELES Dection	Passenass BLID-FILIDEN BEED-SE2915 File File File	=	
	Hra Jahr Make Dime Dight Se S Coppi	aader Looks noolled Calie 17 14 Mae Robus Robus Antas milith	RADOTINOTS BUID-LADEAD Dection BUID To Logo	Panastass BASP711055 BEEPSE2915 Fat		
	Bran Jano J Bana Jana Japa J Graph Esternature	ander (node nodel corie 17 14) Proc Robus arien niciti arien niciti	RESOTIEDTE BURDTAIDES Fait Burtin With the surger	Pessenase RASETIENS BITESETES Fint Texture Denive		
	Bra Jane Denn Apple Jan Second Enternation	actor (add) could cain y yr Pite Solar arlen niaffi arlen niaffi ganlythy	RESOTIEDTE BIRDIAIDES Decline Unite the score OFF	Pessenais RLSS7(105) RTESLESIS Feet Testre RPA Second RPA Second		
	Bra Japa Malas Dime Right Sa Compt Editor fuel too Ress Little Ress Little Litt	acter (sale social cale y totat totat eron mith and nout republi provinity page -	RESOTIEDTE BURDTAIDES Fait Burtin With the surger	Processo BLIDPY LODA BLIDPY LODA BLIDDLD Frie Decive JBPA Sector (BP Logen		
	Bra Japa Malas Dime Right Sa Compt Editor fuel too Ress Little Ress Little Litt	actor (add) could cain y yr Pite Solar arlen niaffi arlen niaffi ganlythy	RADOTILISTS BITEFEATERS Face Destine UP in Face OFF Destine Destine	Pessenais RLSS7(105) RTESLESIS Feet Testre RPA Second RPA Second		
	Him Jappi Market Dissue Laphy Silver all fam Lense Laphy Lap	noor i sub mobili cale y vit the Solar and noor mobili producty periodicy periodicy periodicy	RAND TO LOTE BIND FAILURS Fait Section With the second UP F Lot 1	Processo BLIDPY LODA BLIDPY LODA BLIDDLD Frie Decive JBPA Sector (BP Logen		
	Bra Jav Minis Dana Dago Se Gana Lian Han Lian Jan Jian Jian Jian Jian	acter (sale social cale y totat totat eron mith and nout republi provinity page -	RADOTILISTS BITEFEATERS Face Destine UP in Face OFF Destine Destine	Processo BLIDPY LODA BLIDPY LODA BLIDDLD Frie Decive JBPA Sector (BP Logen		

Configuring motion controllers

Configuration software PANATERM for MINAS AC servo motors & drivers

PANATERM assists users in making parameter and control settings as well as creating and analyzing data tables during operation. The software can be installed on any commercially available personal computer. The connection to the MINAS series is established via the USB port.

Free of charge

Basic functions

- Parameter setup
- After a parameter has been defined on the screen, it will immediately be sent to the driver.
- Frequently used parameters can be listed separately in a second display.

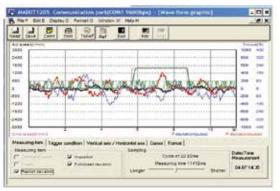
Monitoring control conditions

- Monitor
- · Settings: control mode, velocity, torque, error and warning
- Driver input signal
- Load conditions: Overview of command/feedback pulses, load ratio, regenerative resistive load ratio
- Alarm .
- Display/delete number and contents of the current alarm and the last 14 error events

Setup

- · Auto tuning
- Gain adjustment and inertia ratio measurement
- Line graph display
- The line graph diagram shows command and current velocity, torque, and the tracking error.
- Absolute encoder setup
- Clears absolute encoder at the origin
- Displays single turn/multi turn
- Displays absolute encoder status

Analysis of mechanical operation data (frequency analysis)


Measures frequency characteristics of the machine; displays Bode diagram

Download the software free of charge from Panasonic's website: Home→ Downloads→ SPS→ FPWIN Pro→ Library

Line graph display

Motor capacity selection software

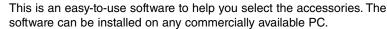
Mselect software

Figure 1 Mselect is a software to help you select the correct motor capacity and motion controller from Panasonic's MINAS series. Find the optimal type of motor with regards to the mechanical layout and the dynamic requirements. It is a very valuable tool for mechanical engineering as it also provides CAD data in 2D and 3D. The software offers a complete analysis and detailed usage instructions for the MINAS A5 series in all sizes.

Selecting the motor capacity is done in four steps:

1. Select mechanical parts and input their parameters (figure 1)

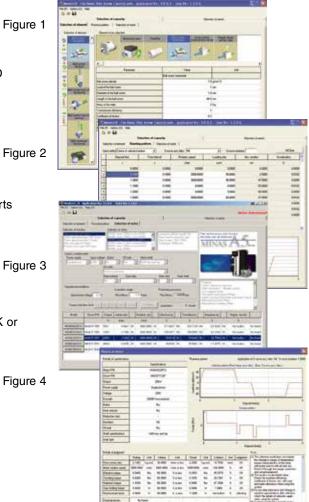
The user can select parts from a database with all mechanical standard parts (gears, coupling, spindle axis, etc.).


2. Determine the motion profile (figure 2)

Speed, position, ramps, etc.

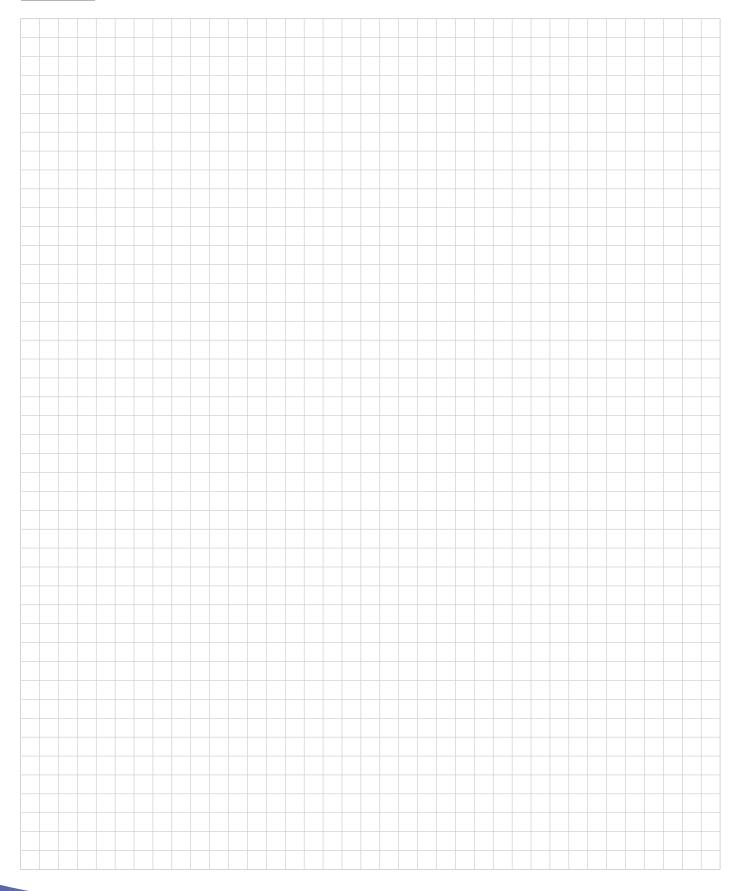
3. Select the correct motor series (figure 3)

1- or 3-phase, input voltage, torque, etc. The software calculates the parameters for the series selected and displays the different criteria with OK or NG (not good).


4. Check and print result (figure 4)

MINAS SELECTION TOOLS

- 1. Enter motor data, encoder selection, and cable length
- 2. Click [Select_MINAS] to display all matching accessories Drivers, filters, cables, etc.
- 3. You can even have the data sent to you or your customer by e-mail.



Memo

Other Panasonic products

Panasonic Electric Works offers a wide product range from one source, from individual components to complete systems. Technology support for advice, design-in, installation and commissioning by our qualified application engineers round off the Panasonic service profile.

Human machine interfaces

Our compact size, bright and easy-to-read human machine interfaces can be used to visualize inspection results. Touch panels can even replace the standard keypad if you so desire.

UV curing systems

Aicure UJ30 is a LED curing system that quickly hardens UV-sensitive resins such as adhesives, ink and coatings. Its cutting edge LED technology is especially suited for precise, high-intensity curing.

ACD components

Components such as Eco-POWER METERS, timers/counters, temperature controllers, limit switches and fans round off our wide factory automation product range.

Sensors

As a pioneering manufacturer of sensors, Panasonic provides high performance sensors for a wide range of applications, facilitating factory automation in various types of production lines, such as those used for the manufacturing of semiconductors.

Laser Markers

Panasonic Laser Markers are ideal for non-contact, permanent labeling of most materials, e.g. metal, plastics, glass, paper, wood and leather. Several CO₂ laser marking systems and a unique FAYb fiber laser marker can be easily integrated into existing production systems for a great variety of marking tasks.

Marketa Eage Sa Padific Eage Eage</

Panasonic Electric Works

Please contact our Global Sales Companies in:

i loudo contact	our arobur ouroe oompaniee m.	
Europe		
 Headquarters Austria 	Panasonic Electric Works Europe AG Panasonic Electric Works Austria GmbH	Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.com Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (0) 2236-26846, Fax +43 (0) 2236-46133 www.panasonic-electric-works.at
	Panasonic Industrial Devices Materials Europe GmbH	Ennshafenstraße 30, 4470 Enns, Tel. +43 (0) 7223 883, Fax +43 (0) 7223 88333, www.panasonic-electronic-materials.com
Benelux	Panasonic Electric Works Sales Western Europe B.V.	De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499 372727, Fax +31 (0) 499 372185, www.panasonic-electric-works.nl
Czech Republic	Panasonic Electric Works Europe AG	Administrative centre PLATINIUM, Veveří 3163/111, 616 00 Brno, Tel. +420 541 217 001, Fax +420 541 217 101, www.panasonic-electric-works.cz
France	Panasonic Electric Works Sales Western Europe B.V.	Succursale française, 10, rue des petits ruisseaux, 91370 Verrières Le Buisson, Tél. +33 (0) 1 6013 5757, Fax +33 (0) 1 6013 5758, www.panasonic-electric-works.fr
Germany	Panasonic Electric Works Europe AG	Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.de
Hungary	Panasonic Electric Works Europe AG	Magyarországi Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +36 1 999 89 26 www.panasonic-electric-works.hu
Ireland	Panasonic Electric Works UK Ltd.	Irish Branch Office, Dublin, Tel. +353 (0) 14600969, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk
Italy	Panasonic Electric Works Italia srl	Via del Commercio 3-5 (Z.I. Ferlina), 37012 Bussolengo (VR), Tel. +39 0456752711, Fax +39 0456700444, www.panasonic-electric-works.it
Nordic Countries	Panasonic Electric Works Europe AG	Filial Nordic, Knarrarnäsgatan 15, 164 40 Kista, Sweden, Tel. +46 859476680, Fax +46 859476690, www.panasonic-electric-works.se
	Panasonic Eco Solutions Nordic AB	Jungmansgatan 12, 21119 Malmö, Tel. +46 40 697 7000, Fax +46 40 697 7099, www.panasonic-fire-security.com
Poland	Panasonic Electric Works Polska sp. z o.o	ul. Wołoska 9A, 02-583 Warszawa, Tel. +48 22 338-11-33, Fax +48 22 338-12-00, www.panasonic-electric-works.pl
Spain	Panasonic Electric Works España S.A.	Barajas Park, San Severo 20, 28042 Madrid, Tel. +34 913293875, Fax +34 913292976, www.panasonic-electric-works.es
Switzerland	Panasonic Electric Works Schweiz AG	Grundstrasse 8, 6343 Rotkreuz, Tel. +41 (0) 41 7997050, Fax +41 (0) 41 7997055, www.panasonic-electric-works.ch
United Kingdom	Panasonic Electric Works UK Ltd.	Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6 LF, Tel. +44 (0) 1908 231555, Fax +44 (0) 1908 231599, www.panasonic-electric-works.co.uk

North & South America

Panasonic Industrial Devices Sales Company of America	629 Central Avenue, New Providence, N.J. 07974, Tel. 1-908-464-3550, Fax 1-908-464-8513, www.pewa.panasonic.com
hina/Japan	
Panasonic Electric Works Sales (China) Co. Ltd.	Level 2, Tower W3, The Towers Oriental Plaza, No. 2, East Chang An Ave., Dong Cheng District, Beijing 100738, Tel. +86-10-5925-5988, Fax +86-10-5925-5973
Panasonic Industrial Devices Automation Controls Sales (Hong Kong) Co., Ltd.	RM1205-9, 12/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. +852-2956-3118, Fax +852-2956-0398
Panasonic Corporation	1048 Kadoma, Kadoma-shi, Osaka 571-8686, Japan, Tel. +81-6-6908-1050, Fax +81-6-6908-5781, www.panasonic.net
Panasonic Industrial Devices Automation Controls Sales Asia Pacific	300 Beach Road, #16-01 The Concourse, Singapore 199555, Tel. +65-6390-3811, Fax +65-6390-3810
	of America hina /Japan Panasonic Electric Works Sales (China) Co. Ltd. Panasonic Industrial Devices Automation Controls Sales (Hong Kong) Co., Ltd. Panasonic Corporation Panasonic Industrial Devices