

Programmable Controller
FP7 series
User's Manual

SCU Communication

[Applicable models]

- FP7 CPU Unit
- FP7 Serial Communication Unit
(Model number AFP7NSCR)
- FP7 Extension Cassette (Communication Cassette)
 - RS-232C x 1 ch type
(Model number AFP7CCRS1)
 - RS-232C x 2 ch type
(Model number AFP7CCRS2)
 - RS-422/RS-485 x 1 ch type
(Model number AFP7CCRM1)
 - RS-422/RS-485 x 2 ch type
(Model number AFP7CCRM2)
 - RS-232C x 1 ch type
+ RS-422/RS-485 x 1 ch type
(Model number AFP7CCRS1M1)

(MEMO)

Introduction

Thank you for buying a Panasonic product. Before you use the product, please carefully read the installation instructions and the user's manual, and understand their contents in detail to use the product properly.

Types of Manual

- There are different types of user's manual for the FP7 series, as listed below. Please refer to a relevant manual for the unit and purpose of your use.
- The manuals can be downloaded from the Panasonic website:<https://industry.panasonic.com/global/en/downloads/?tab=manual>.

Unit name or purpose of use	Manual name	Manual code
FP7 Power Supply Unit	FP7 CPU Unit User's Manual (Hardware)	WUME-FP7CPUH
	FP7 CPU Unit Command Reference Manual	WUME-FP7CPUPGR
	FP7 CPU Unit User's Manual (Logging Trace Function)	WUME-FP7CPULOG
	FP7 CPU Unit User's Manual (Security Function)	WUME-FP7CPUSEC
Instructions for Built-in LAN Port	FP7 CPU Unit User's Manual (LAN Port Communication)	WUME-FP7LAN
	FP7 CPU Unit User's Manual (Ethernet Expansion Function)	WUME-FP7CPUETEX
	FP7 CPU Unit User's Manual (EtherNet/IP Communication)	WUME-FP7CPUEIP
	Web Server Function Manual	WUME-FP7WEB
Instructions for Built-in COM Port	FP7 Series User's Manual (SCU Communication)	WUME-FP7COM
FP7 Extension Cassette (Communication) (RS-232C / RS485 type)		
FP7 Extension Cassette (Communication) (Ethernet Type)	FP7 Series User's Manual (Communication Cassette Ethernet Type)	WUME-FP7CCET
FP7 Extension (Function) Cassette Analog Cassette	FP7 Analog Cassette User's Manual	WUME-FP7FCA
FP7 Digital Input / Output Unit	FP7 Digital Input / Output Unit User's Manual	WUME-FP7DIO
FP7 Analog Input Unit	FP7 Analog Input Unit User's Manual	WUME-FP7AIH
FP7 Analog Output Unit	FP7 Analog Output Unit User's Manual	WUME-FP7AOH
FP7 Thermocouple Multi-analog Input Unit	FP7 Thermocouple Multi-analog Input Unit FP7 RTD Input Unit User's Manual	WUME-FP7TCRTD
FP7 RTD Input Unit		
FP7 Multi Input / Output Unit	FP7 Multi Input / Output Unit User's Manual	WUME-FP7MXY
FP7 High-speed counter unit	FP7 High-speed Counter Unit User's Manual	WUME-FP7HSC

Unit name or purpose of use	Manual name	Manual code
FP7 Pulse Output Unit	FP7 Pulse Output Unit User's Manual	WUME-FP7PG
FP7 Positioning Unit	FP7 Positioning Unit User's Manual	WUME-FP7POSP
FP7 Serial Communication Unit	FP7 Series User's Manual (SCU Communication)	WUME-FP7COM
FP7 Multi-wire Link Unit	FP7 Multi-wire Link Unit User's Manual	WUME-FP7MW
FP7 Motion Control Unit	FP7 Motion Control Unit User's Manual	WUME-FP7MCEC
PHLS System	PHLS System User's Manual	WUME-PHLS
Programming Software FPWIN GR7	FPWIN GR7 Introduction Guidance	WUME-FPWINGR7

Safety Precautions

- In order to prevent injuries and accidents, always adhere to the following.
- Always read this manual thoroughly before performing installation, operation, maintenance, and inspection, and use the device correctly.
- Ensure you are familiar with all device knowledge, safety information, and other precautions before use.
- In this manual, safety precaution levels are classified into "warnings" and "cautions".

WARNING Cases where dangerous situations are expected to arise whereby the user could die or suffer serious injury if product is handled incorrectly

- Implement safety measures externally from this product so that the entire system can operate safely even if a failure occurs due to a fault in this product or some external factor.
- Do not use in an atmosphere containing flammable gases.
Doing so could cause explosions.
- Do not dispose of this product by placing it in fire.
This could cause splitting of batteries, electronic components, etc.

CAUTION Cases where dangerous situations are expected to arise whereby the user could suffer injury or physical damage could occur if product is handled incorrectly

- In order to prevent the product from generating abnormal heat or emitting smoke, use the product with some margin to the guaranteed characteristics and performance values.
- Do not disassemble or modify the product.
Doing so could cause abnormal heat generation or smoke.
- Do not touch electrical terminals while the power is on.
There is a risk of electrical shock.
- Construct external emergency stop and interlock circuits.
- Securely connect wires and connectors.
Poor connections can cause abnormal heat generation or smoke.
- Do not allow foreign materials such as liquids, combustibles, or metals, to enter inside the product.
Doing so could cause abnormal heat generation or smoke.
- Do not perform work (connection, disconnection, etc.) while the power is on.
There is a risk of electrical shock.
- If methods other than those specified by our company are used when operating this product, the protection functions of the unit may be lost.
- This product was developed and manufactured for use in industrial environments.

Copyright / Trademarks

- The copyright of this manual is owned by **Panasonic Industry Co., Ltd.**
- Unauthorized reproduction of this manual is strictly prohibited.
- Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries.
- Other company and product names are trademarks or registered trademarks of their respective companies.

Handling Precautions

- In this manual, the following symbols are used to indicate safety information that must be observed.

	Indicates an action that is prohibited or a matter that requires caution.
	Indicates an action that must be taken.
	Indicates supplemental information.
	Indicates details about the subject in question or information useful to remember.
Procedure	Indicates operation procedures.

FP7 Connector Compatibility

The connectors of old and new model FP7CPU units and add-on cassettes (hereinafter "cassettes") are shaped differently. Please use old model cassettes with old model units and new model cassettes with new model units as shown in the table below.

■ Old Model

Type	Old Product No.
CPU unit	AFP7CPS41ES, AFP7CPS41E, AFP7CPS31ES, AFP7CPS31E, AFP7CPS31S, AFP7CPS31, AFP7CPS21
Serial Communication Unit	AFP7NSC
Cassette	AFP7CCS1, AFP7CCS2, AFP7CCM1, AFP7CCM2, AFP7CCS1M1, AFP7CCET1, AFP7FCRA21, AFP7FCAD2, AFP7FCTC2

■ New Model

Type	New Product No.
CPU unit	AFP7CPS4RES, AFP7CPS4RE, AFP7CPS3RES, AFP7CPS3RE, AFP7CPS3RS, AFP7CPS3R, AFP7CPS2R
Serial Communication Unit	AFP7NSCR
Cassette	AFP7CCRS1, AFP7CCRS2, AFP7CCRM1, AFP7CCRM2, AFP7CCRS1M1, AFP7CCRET1, AFP7FCRA21, AFP7FCRAD2, AFP7FCRTC2

Note

- Each FP7 unit can be connected to the CPU unit of a new or old model.
- Firmware version upgrades for the CPU unit are available for both new and old models.
- When attaching expansion cassettes to the FP7CPU unit, please use only old models, or only new models. Trying to attach a combination of old models and new models may cause damage.

Table of Contents

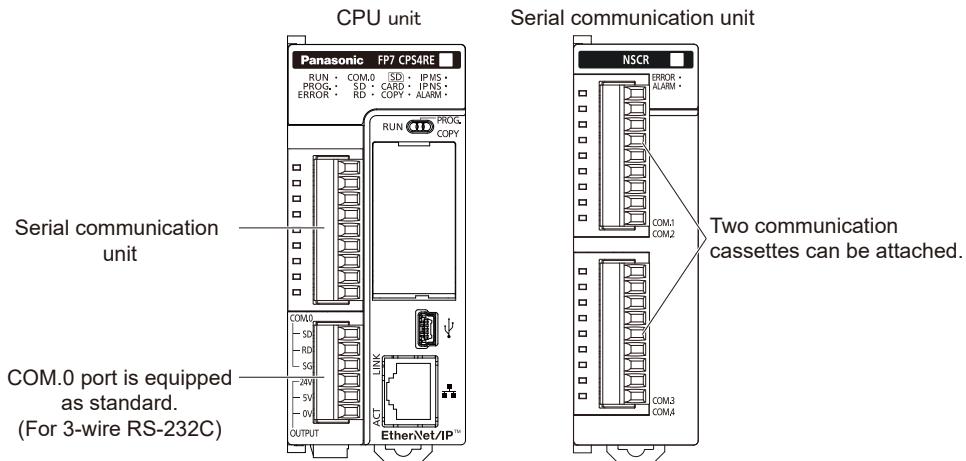
1 Unit Functions and Restrictions on Combination	1-1
1.1 Features and Functions of Units	1-2
1.1.1 Functions of Units	1-2
1.1.2 Unit type	1-3
1.1.3 Types of Cassette	1-3
1.1.4 Applications that can be Used in Each Port.....	1-3
1.2 Overview of Communication Functions	1-5
1.2.1 PLC Link Functions (MEWNET-W0)	1-5
1.2.2 MEWTOCOL Master/Slave Communication.....	1-5
1.2.3 MODBUS RTU Master/Slave Communication.....	1-7
1.2.4 General-Purpose Communication.....	1-8
1.3 Restrictions on Units Combination.....	1-9
1.3.1 Restrictions on the Number of Installed Units.....	1-9
1.3.2 Restrictions on the Combination of Extension Cassettes (Communication Cassettes).....	1-9
1.3.3 Restrictions on Communication Functions to be Used	1-9
1.3.4 Unit to be Used and Applicable Versions of CPU Unit and FPWIN GR7.....	1-9
1.3.5 Restrictions on Consumption Current.....	1-10
2 Names and Functions of Parts	2-1
2.1 Names and Functions of Parts.....	2-2
2.1.1 Communication Port of CPU Unit	2-2
2.1.2 Parts Names and Functions of Serial Communication Unit	2-3
3 Wiring the COM. Port.....	3-1
3.1 Attaching a Communication Cassette.....	3-2
3.1.1 Attachment Instructions	3-2
3.2 Wiring of COM. Port Terminal Block	3-3
3.2.1 Suitable Wires and Tools	3-3
3.2.2 Applicable Cable	3-4
3.2.3 Wiring Method	3-5
3.3 Wiring for CPU Unit (GT Power Supply and COM.0 Port).....	3-7
3.3.1 Handling of GT Power Supply Terminals	3-7
3.3.2 Terminal Layouts and Examples of Wiring	3-7
3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports	3-9
3.4.1 Communication Cassette AFP7CCRS1 (RS-232C, 1-Channel Insulated Type)	3-9
3.4.2 Communication Cassette AFP7CCRS2 (RS-232C, 2-Channel Insulated Type)	3-9
3.4.3 Communication Cassette AFP7CCRM1 (RS-422 / RS-485, 1- Channel Insulated Type).....	3-12
3.4.4 Communication Cassette AFP7CCRM2 (RS-422 / RS-485, 2- Channel Insulated Type).....	3-15
3.4.5 Communication Cassette AFP7CCRS1M1 (RS-232C 1-Channel + RS-485 1-Channel Insulated Type)	3-18

4 I/O Allocation	4-1
4.1 Input/Output Signals Used for Communication.....	4-2
4.1.1 I/O Allocation of CPU Unit.....	4-2
4.1.2 I/O Allocation of Serial Communication Unit	4-4
4.2 Registration in I/O Map	4-7
4.2.1 Settings Using FPWIN GR7 (For CPU with built-in SCU).....	4-7
4.2.2 Settings Using FPWIN GR7 (For Serial Communication Unit)	4-7
5 Setting and Confirming Communication Conditions	5-1
5.1 Setting Applications and Communication Conditions	5-2
5.1.1 Applications to be Set for Each Port	5-2
5.1.2 Conditions to be Set for Each Port.....	5-2
5.2 Setting Communication Conditions.....	5-3
5.2.1 Settings Using FPWIN GR7 (For CPU with built-in SCU).....	5-3
5.2.2 Settings Using FPWIN GR7 (For Serial Communication Unit)	5-4
6 PLC Link	6-1
6.1 Operation of PLC Link MEWNET-W0	6-2
6.1.1 Operation Overview of PLC Link.....	6-2
6.1.2 Roles of Link Relays and Link Registers	6-2
6.2 Configuration Required for PLC Link	6-4
6.2.1 Setup Procedure (For CPU with Built-in SCU).....	6-4
6.2.2 Setup Procedure (For Serial Communication Unit).....	6-5
6.2.3 List of Setting Items	6-6
6.3 Setting Items for PLC Link	6-8
6.3.1 Unit Number Setting.....	6-8
6.3.2 Setting of the Largest Unit Number.....	6-8
6.3.3 Memory Block No. of Link Relays and Link Registers to be Used... 6-8	6-8
6.3.4 Ranges of Link Relays and Link Registers to be Used.....	6-9
6.3.5 Link Relay Transmission Start Number and Sending Size	6-9
6.3.6 Link Register Transmission Start Number and Sending Size	6-10
6.4 Response Time of PLC Link	6-13
6.4.1 Response Time of One Transmission Cycle	6-13
6.4.2 Response Time when There are Units that have not been Added to the Link	6-14
7 MEWTOCOL Master-Slave Communication	7-1
7.1 Configuration.....	7-2
7.1.1 Setting Communication Conditions	7-2
7.2 List of MEWTOCOL / MEWTOCOL7 Supporting Commands	7-3
7.2.1 List of MEWTOCOL-COM Commands	7-3
7.2.2 List of MEWTOCOL7 Commands	7-3
7.3 MEWTOCOL-COM Master Communication (RECV).....	7-5
7.3.1 Read Data from an External Device	7-5
7.3.2 RECV (MEWTOCOL Master / MODBUS Master).....	7-7
7.4 MEWTOCOL-COM Master Communication (SEND).....	7-15
7.4.1 Write Data into an External Device	7-15
7.4.2 SEND (MEWTOCOL Master / MODBUS Master).....	7-17

8 MODBUS RTU Master-Slave Communication	8-1
8.1 Configuration.....	8-2
8.1.1 Setting Communication Conditions.....	8-2
8.2 List of MODBUS RTU Supported Commands	8-3
8.2.1 List of MODBUS Function Codes	8-3
8.3 MODBUS RTU Master Communication (RECV)	8-4
8.3.1 Read Data from an External Device	8-4
8.3.2 RECV (MEWTOCOL Master / MODBUS Master).....	8-6
8.3.3 RECV (MODBUS Master: Function Code Specification)	8-14
8.4 MODBUS RTU Master Communication (SEND)	8-21
8.4.1 Write Data into an External Device	8-21
8.4.2 SEND (MEWTOCOL Master / MODBUS Master).....	8-23
8.4.3 SEND (MODBUS Master: Function Code Specification)	8-31
9 General-Purpose Communication	9-1
9.1 Operation of General-Purpose Communication.....	9-2
9.1.1 Read Data from an External Device	9-2
9.1.2 Write Data into an External Device	9-2
9.2 Configuration.....	9-3
9.2.1 Setting Communication Conditions	9-3
9.3 Sending Operation.....	9-4
9.3.1 Overview of Sending Operation	9-4
9.3.2 Contents of Sent Data.....	9-6
9.3.3 GPTRNS / pGPSEND /GPSEND (General-Purpose Communication Send Instruction).....	9-6
9.3.4 Precautions on Sending Data	9-16
9.4 Receiving Operation	9-18
9.4.1 Overview of Receiving Operation	9-18
9.4.2 Contents of Received Data	9-20
9.4.3 Precautions on Receiving Data.....	9-20
9.4.4 Operations of the "Reception Done Copy" Flag and Multiplex Reception.....	9-21
9.4.5 GP_RECV (General-Purpose Communication Receive Instruction)	9-21
9.5 Sending/Receiving Flag Operation	9-28
9.5.1 No Header (Start Code), Terminator (End Code) "CR":	9-28
9.5.2 Start Code "STX", End Code "ETX":.....	9-29
10 Troubleshooting	10-1
10.1 Self-diagnostic Function.....	10-2
10.1.1 CPU Unit's Operation Monitor LED.....	10-2
10.1.2 Operation at the Time of Error	10-2
10.1.3 Serial Communication Unit's Operation Monitor LED	10-3
10.2 What to Do If an Error Occurs (For Each Communication Mode)....	10-4
10.2.1 When Using PLC Link Function	10-4
10.2.2 When Using MEWTOCOL/ MEWTOCOL7/ MODBUS RTU Function	10-4
10.2.3 When Using General-purpose Communication Function.....	10-5
10.3 Checking Status with PMGET Instruction	10-7
10.3.1 Specifications of PMGET Instruction	10-7

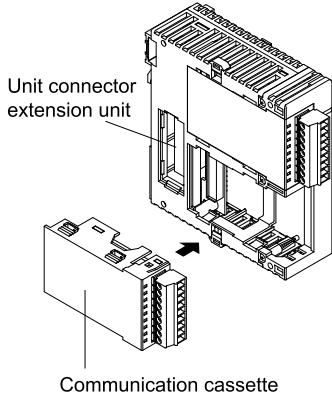
10.3.2 List of Communication Parameters	10-7
10.4 Clearing Errors Using User Programs	10-10
10.4.1 Clearing Errors Using User Programs	10-10
11 Specifications	11-1
11.1 Communication Function Specifications	11-2
11.1.1 CPU Unit Communication Specifications	11-2
11.1.2 Extension Cassette Communication Specifications	11-2
11.2 MEWTOCOL-COM Format	11-4
11.2.1 MEWTOCOL-COM command Format	11-4
11.2.2 MEWTOCOL-COM Response Format	11-5
11.3 MEWTOCOL7-COM Format	11-7
11.3.1 MEWTOCOL7-COM Command Format	11-7
11.3.2 MEWTOCOL7-COM Response Format	11-8
11.4 MODBUS RTU Format	11-10
11.4.1 MODBUS RTU command format	11-10
11.4.2 MODBUS RTU Response Format	11-10

1 Unit Functions and Restrictions on Combination



1.1	Features and Functions of Units	1-2
1.1.1	Functions of Units	1-2
1.1.2	Unit type	1-3
1.1.3	Types of Cassette	1-3
1.1.4	Applications that can be Used in Each Port	1-3
1.2	Overview of Communication Functions	1-5
1.2.1	PLC Link Functions (MEWNET-W0)	1-5
1.2.2	MEWTOCOL Master/Slave Communication	1-5
1.2.3	MODBUS RTU Master/Slave Communication	1-7
1.2.4	General-Purpose Communication	1-8
1.3	Restrictions on Units Combination	1-9
1.3.1	Restrictions on the Number of Installed Units	1-9
1.3.2	Restrictions on the Combination of Extension Cassettes (Communication Cassettes)	1-9
1.3.3	Restrictions on Communication Functions to be Used	1-9
1.3.4	Unit to be Used and Applicable Versions of CPU Unit and FPWIN GR7	1-9
1.3.5	Restrictions on Consumption Current	1-10

1.1 Features and Functions of Units


1.1 Features and Functions of Units

1.1.1 Functions of Units

■ Removable serial communication cassettes are used.

- Selectable from five communication cassettes in conformity with communication standards of RS-232C, RS-422 and RS-485. (Sold separately)
- One communication cassette can be attached to the CPU unit, and two communication cassettes to the serial communication unit.

Example: In the case of serial communication unit

■ The CPU unit includes a COM.0 port as standard equipment.

The CPU unit includes a RS-232C port (3-wire type) for the connection with a programmable display and a power supply as standard equipment.

■ Four communication modes are available.

The PC link, MEWTOCOL, MODBUS RTU and general-purpose communication modes are provided, and many serial communication devices can be connected by the combination of communication cassettes.

1.1.2 Unit type

■ Types of unit that can perform serial communication

Name	Model no.	Allocated communication port				
		COM.0	COM.1	COM.2	COM.3	COM.4
CPU unit	AFP7CPS4RE AFP7CPS4RES AFP7CPS3RE AFP7CPS3RES AFP7CPS3R AFP7CPS3RS AFP7CPS2R	•	•	•		
Serial Communication Unit	AFP7NSCR		•	•	•	•

(Note 1) The COM.0 port equipped in the CPU unit is a terminal block especially for RS-232C (3-wire type).

1.1.3 Types of Cassette

■ Types of communication cassette

Model no.	communication interface	Allocated communication port				
		COM.0	COM.1	COM.2	COM.3	COM.4
AFP7CCRS1	1-channel RS-232C		•		•	
AFP7CCRS2	3-wire 2-channel RS-232C		•	•	•	•
	5-wire 1-channel RS-232C		•		•	
AFP7CCRM1	1-channel RS-422 / RS-485		•		•	
AFP7CCRM2	2-channel RS-422 / RS-485		•	•	•	•
AFP7CCRS1M1	1-channel RS-485		•		•	
	3-wire 1-channel RS-232C			•		•

(Note 1) For AFP7CCRS2, select and use either 3-wire 2-channel RS-232C or 5-wire 1-channel RS-232C. Switching should be performed using a switch on the Communication Cassette.

(Note 2) For AFP7CCRM1 and AFP7CCRM2, select and use either RS-422 or RS-485. Switching should be performed using a switch on the Communication Cassette.

(Note 3) For AFP7CCRS1M1, both 1-channel RS-485 and 3-wire 1-channel RS-232C can be used.

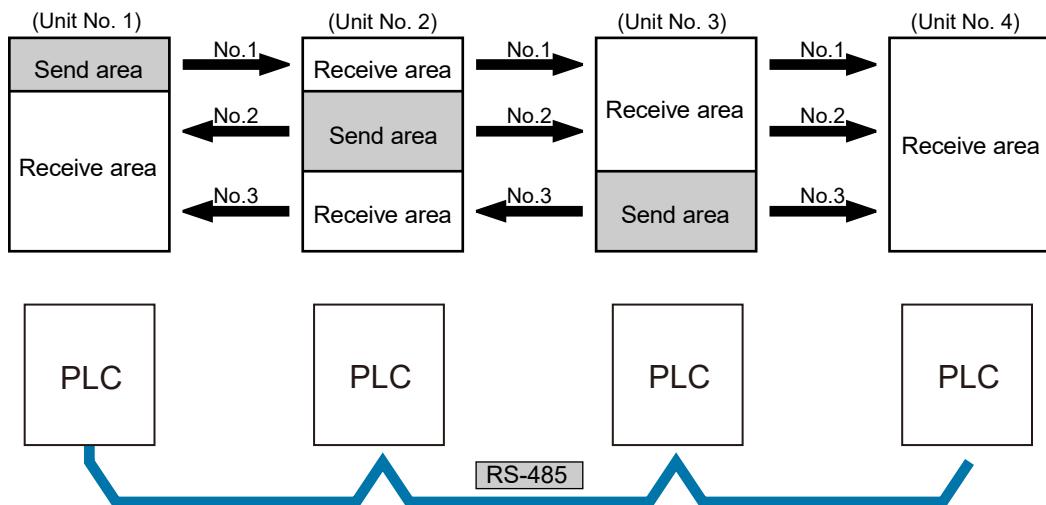
1.1.4 Applications that can be Used in Each Port

■ Available functions for each communication port

Communication function to be used	Allocated communication port				
	COM.0	COM.1	COM.2	COM.3	COM.4
PLC Link		•			

1.1 Features and Functions of Units

Communication function to be used		Allocated communication port				
		COM.0	COM.1	COM.2	COM.3	COM.4
MEWTOCOL7-COM <small>(Note 1)</small>	Master	•	•	•	•	•
	Slave	•	•	•	•	•
MODBUS RTU	Master	•	•	•	•	•
	Slave	•	•	•	•	•
General-purpose communication		•	•	•	•	•


(Note 1) In MEWTOCOL7-COM, there is no master communication function.

1.2 Overview of Communication Functions

1.2.1 PLC Link Functions (MEWNET-W0)

■ Overview of function

- A system can be configured for the PLC link (MEWNET-W0).
- Exclusive internal relays “link relays (L)” and data registers “link registers (LD)” are shared between the connected PLCs.
- Among up to 16 PLCs, data can be exchanged with 1,008 link relay points and 128 link register words.

■ Applications of PLC Link Functions (MEWNET-W0)

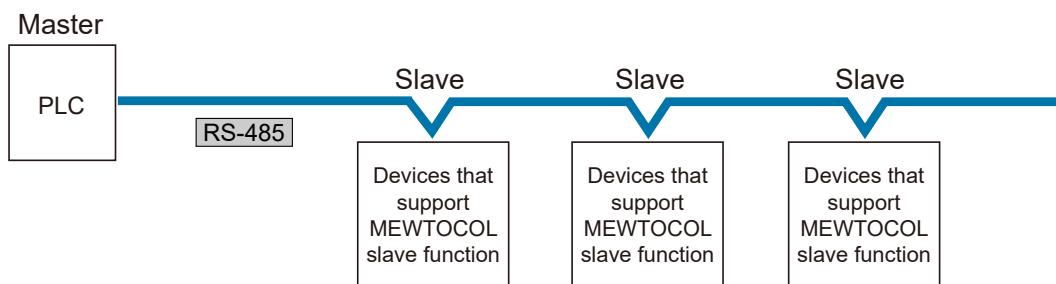
Among our FP series PLC, it can be used for link functions with the following models. It is also capable of 1:1 communication via RS-232C port.

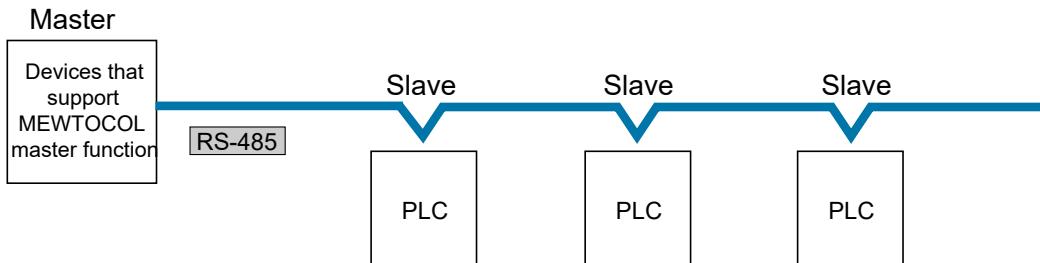
- FP0H (Using communication cassette RS-485 type)
- FP-X0 (L40MR / L60MR)
- FP0R (RS-485 type)
- FPsigma (communication cassette RS-485 type is used)
- FP-X (Using Communication cassette RS-485 type)
- FP2 Multi Communication Unit (Using Communication cassette RS-485 type)

1.2.2 MEWTOCOL Master/Slave Communication

■ Overview of function

- Execute communication using MEWTOCOL-COM, a communication protocol used by our PLC.
- In master communication, PLC executes communication by sending commands to devices that support MEWTOCOL, and receiving responses. Messages in accordance with the


1.2 Overview of Communication Functions


protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.

- Slave communication is performed when the computer or display connected to PLC has the sending right, and sends commands, and PLC returns responses. In slave communication, PLC responds automatically, so no program concerning communication is necessary on the PLC side.
- The data size that can be sent or received in a single communication is up to 507 words for register transmission (up to 1,014 words for MEWTOCOL7-COM) and 1 bit for bit transmission.

Master function

Slave function

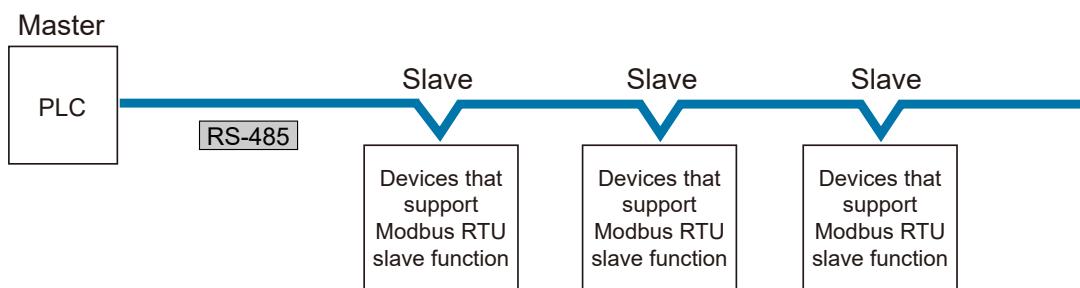
■ Examples of applications of MEWTOCOL master communication

This is used for connection with a device that supports our PLC's protocol MEWTOCOL.

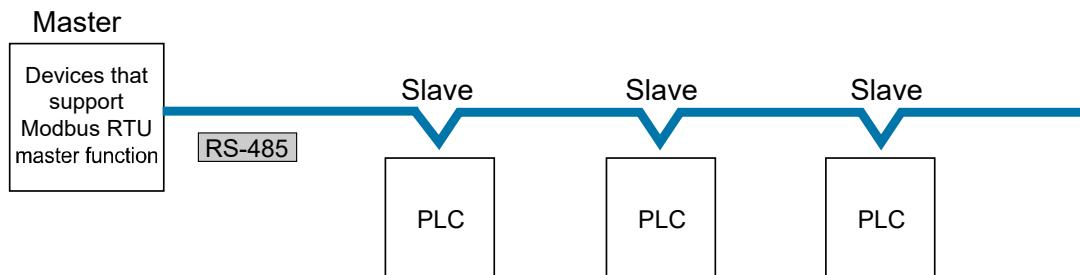
- Programmable controller FP series
- Displacement sensor HL series
- Eco power meter KW series

■ Examples of applications of MEWTOCOL slave communication

This is used for connection with a device that supports our PLC's protocol MEWTOCOL-COM master communication.


- Programmable displays made by various manufacturers

1.2.3 MODBUS RTU Master/Slave Communication


■ Overview of function

- This is used for communicating with other devices that support the MODBUS RTU protocol.
- In master communication, communication is performed when the master unit sends instructions (command messages) to slave units and the slave unit returns responses (response messages) according to the instructions. Messages in accordance with the protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.
- Slave communication is performed when the higher device connected to PLC has the sending right, and sends commands, and PLC returns responses. In slave communication, PLC responds automatically, so no program concerning communication is necessary on the PLC side.
- The data size that can be sent or received in a single communication is up to 127 words for register transmission and 2,040 bit for bit transmission.

Master function

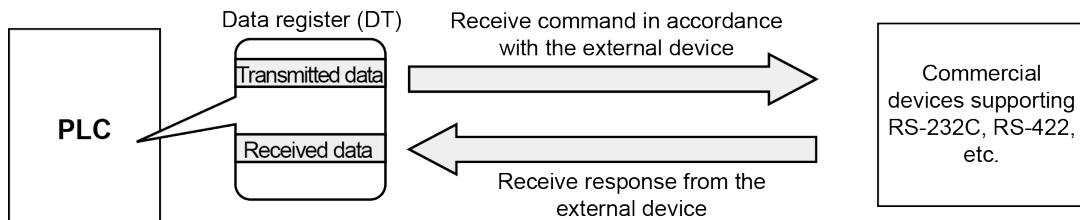
Slave function

■ Examples of applications of MODBUS RTU master communication

This is used for connection with a device that supports the MODBUS RTU protocol.

- Thermoregulator KT series
- Devices from other manufacturers that support MODBUS RTU

■ Examples of applications of MODBUS RTU slave communication


This is used when access is made from the higher device using MODBUS RTU commands.

1.2 Overview of Communication Functions

1.2.4 General-Purpose Communication

■ Overview of function

- General-purpose communication is used when PLC executes communication in accordance with the protocol of the partner device.
- Formulation and sending of command messages to the partner device, and reception processing of responses from the partner device, are performed by the user program. Sending/receiving of data with an external device is executed via given operation memory (e.g. data register).
- Data are sent by converting commands in accordance with the partner device as strings into ASCII text, setting them into a given data register, and executing GPSEND instruction.
- Response received from the partner device is temporarily saved in the buffer. Based on the reception done flag, GPRECV instruction is executed. The ASCII strings can be converted into numerical data, etc. as necessary, by the user program.
- The data size that can be sent or received in a single communication is up to 4,096 bytes. (including control codes)

■ Applications of general-purpose communication

This is used for connection with devices made by differing manufacturers that have dedicated communication protocols.

1.3 Restrictions on Units Combination

1.3.1 Restrictions on the Number of Installed Units

There are following restrictions depending on units to be used.

Unit type	Number of installed units	Remark
Serial Communication Unit	Max. 8 units	

1.3.2 Restrictions on the Combination of Extension Cassettes (Communication Cassettes)

- One communication cassette can be attached to the CPU unit, and two communication cassettes to the serial communication unit.
- The FP7 communication cassette (Ethernet type) can be attached to the CPU only. It cannot be attached to the serial communication unit (SCU).

1.3.3 Restrictions on Communication Functions to be Used

There are the following restrictions on functions to be used when using the SCU or ET-LAN that is built in the CPU unit, or the serial communication unit (SCU).

Function to be used	Restrictions
PLC link function	Up to two communication ports can be used. For using two ports, allocate different link areas to them. <ul style="list-style-type: none"> CPU with built-in SCU (COM.1 port) Serial communication unit (COM.1 port)
MEWTOCOL-COM master MODBUS RTU master	A maximum of 16 communication ports and the number of connections in combination can be used simultaneously. <ul style="list-style-type: none"> CPU with built-in SCU (COM.0 port to COM.2 port) Serial communication unit (COM.1 port to COM.4 port) CPU with built-in ET-LAN (User connections 216)
MEWTOCOL-COM slave MEWTOCOL7-COM slave MODBUS RTU slave	A maximum of 15 communication ports and the number of connections in combination can be used simultaneously. <ul style="list-style-type: none"> CPU with built-in SCU (COM.0 port to COM.2 port) Serial communication unit (COM.1 port to COM.4 port) CPU with built-in ET-LAN (System connections 1 to 4 / User connections 216)
General-purpose communication	There is no restriction.

1.3.4 Unit to be Used and Applicable Versions of CPU Unit and FPWIN GR7

For using the unit, the following versions of CPU unit and FPWIN GR7 are required.

1.3 Restrictions on Units Combination

Unit type	Applicable versions		Remark
	CPU unit	FPWIN GR7	
FP7 Serial Communication Unit	Ver.1.2 or later	Ver.1.3 or later	

1.3.5 Restrictions on Consumption Current

Including other units, the consumption current should be within the allowable capacity of a power supply unit.

■ Unit's consumption current table (24V)

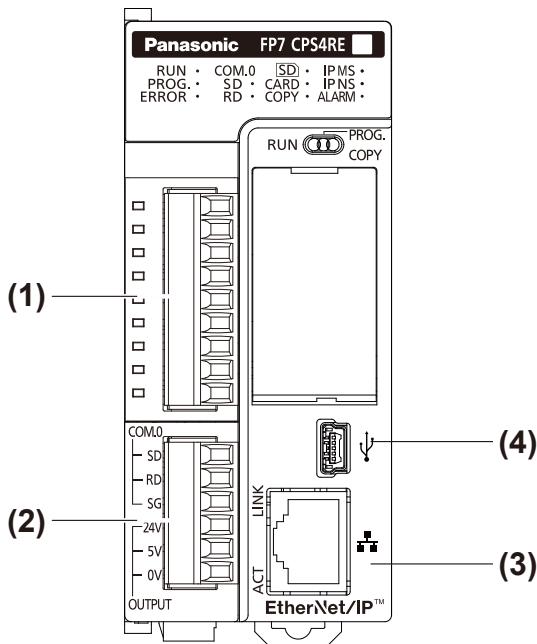
Product name		Model number	Consumption current (mA)
CPU unit	196k steps, Built-in Ethernet function	AFP7CPS4RE AFP7CPS4RES	200mA or less
	120k steps, Built-in Ethernet function	AFP7CPS3RE AFP7CPS3RES	200mA or less
	120k steps, No Ethernet function	AFP7CPS3R AFP7CPS3RS	200mA or less
	64k steps, No Ethernet function	AFP7CPS2R	150mA or less
When attaching Extension Cassette (Communication Cassette) to CPU Unit (Note 1) (Note 2)	RS-232C x 1ch	AFP7CCRS1	35mA or less
	RS-232C x 2ch	AFP7CCRS2	60mA or less
	RS-422 / 485 x 1ch	AFP7CCRM1	60mA or less
	RS-422 / 485 x 2ch	AFP7CCRM2	90mA or less
	RS-232C x 1ch RS-422 / 485 x 1ch	AFP7CCRS1M1	70mA or less
	Ethernet	AFP7CCRET1	35mA or less
Serial Communication Unit		AFP7NSCR	50mA or less
When attaching Extension Cassette (Communication Cassette) to Serial Communication Unit (Note 1) (Note 2)	RS-232C x 1ch	AFP7CCRS1	20mA or less
	RS-232C x 2ch	AFP7CCRS2	40mA or less
	RS-422 / 485 x 1ch	AFP7CCRM1	30mA or less
	RS-422 / 485 x 2ch	AFP7CCRM2	60mA or less
	RS-232C x 1ch RS-422 / 485 x 1ch	AFP7CCRS1M1	50mA or less

(Note 1) The consumption currents listed in the Extension Cassette sections indicate the increased amount of the CPU's consumption current which increases when each extension cassette is added.

(Note 2) The consumption current of the extension cassette (communication cassette) varies according to the unit to which the cassette is attached (CPU or serial communication unit).

Info.

- For information on the restrictions on the combination of units, also refer to *FP7 CPU Unit User's Manual (Hardware)*.


2 Names and Functions of Parts

2.1 Names and Functions of Parts.....	2-2
2.1.1 Communication Port of CPU Unit	2-2
2.1.2 Parts Names and Functions of Serial Communication Unit.....	2-3

2.1 Names and Functions of Parts

2.1.1 Communication Port of CPU Unit

(In the above figure, a communication cassette is attached to the COM.1 and COM.2 ports.)

■ Names and Functions of Parts

(1) COM.1 and COM.2 ports

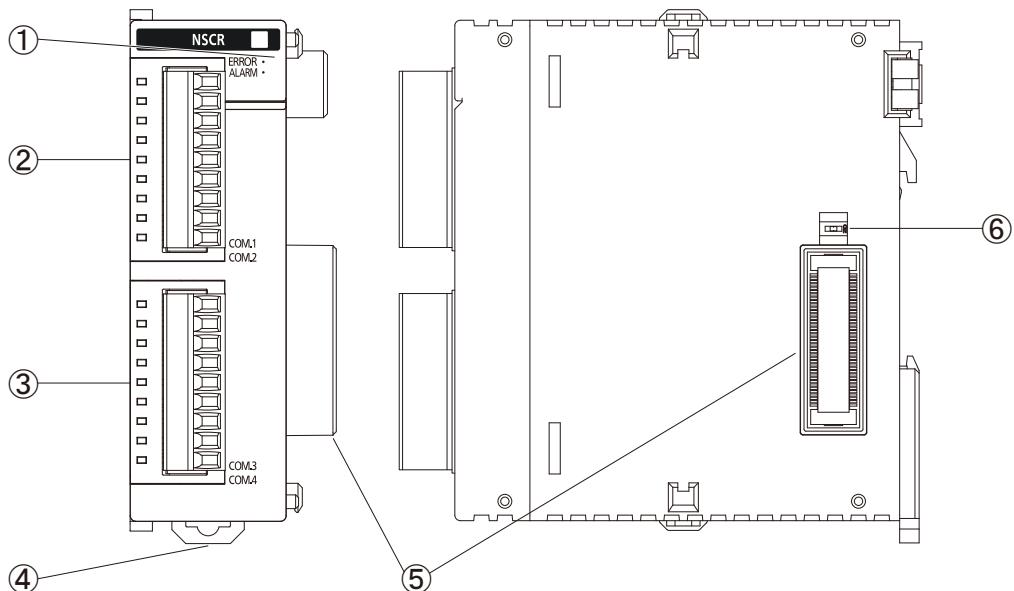
Attach a separately sold communication cassette to use these ports. A blank cover is fitted when the unit is shipped.

(2) COM.0 port, GT power supply terminals

This is an RS-232C port that is equipped to a standard model of CPU unit. It is equipped with power supply terminals (5V DC and 24V DC) to which a GT series programmable display can be connected.

(3) LAN port

This is equipped to a standard model of CPU unit. This is used for connection to Ethernet.


(4) USB port

This is equipped to a standard model of CPU unit. This is used for connecting tool software.

Info.

- For details of the communication method using LAN port, refer to *FP7 CPU Unit User's Manual (LAN port communication)*.
- For details of the communication using Communication cassette (Ethernet type) AFP7CCRET1, refer to *FP7 series User's Manual (Communication cassette Ethernet type)*.

2.1.2 Parts Names and Functions of Serial Communication Unit

(In the above figure, two communication cassettes are attached.)

■ Names and Functions of Parts

(1) Operation monitor LEDs

Display	LED color	Description
-	Blue	Lights when the power supply of the CPU unit is on.
ERROR	Red	Lights when the configuration setting is incorrect, or a communication error occurs.
		Flashes when the factory acceptance test switch is on. (Flashing cycle: 100 ms)
		Flashes when an extension cassette that cannot be used is installed. (Flashing cycle: 500 ms)
ALARM	Red	Lights when an error occurs in hardware.

(2) COM.1 and COM.2 ports

Attach a separately sold communication cassette to use these ports. No blank cover is fitted when the unit is shipped.

These ports differ from the COM.1 and COM.2 ports of the CPU unit.

(3) COM.3 and COM.4 ports

Attach a separately sold communication cassette to use these ports. A blank cover is fitted when the unit is shipped.

(4) DIN hook

This is used to fix the unit to a DIN rail.

(5) Unit connector

This is used to connect the internal circuit of an I/O unit or advanced unit.

(6) Factory acceptance test switch

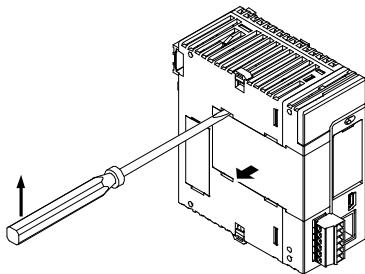
This is used for factory acceptance test. Do not turn it on.

(MEMO)

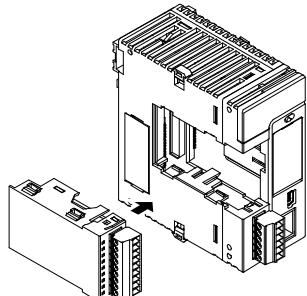
3 Wiring the COM. Port

3.1	Attaching a Communication Cassette	3-2
3.1.1	Attachment Instructions	3-2
3.2	Wiring of COM. Port Terminal Block	3-3
3.2.1	Suitable Wires and Tools	3-3
3.2.2	Applicable Cable	3-4
3.2.3	Wiring Method	3-5
3.3	Wiring for CPU Unit (GT Power Supply and COM.0 Port)	3-7
3.3.1	Handling of GT Power Supply Terminals	3-7
3.3.2	Terminal Layouts and Examples of Wiring	3-7
3.4	Wiring for Communication Cassettes COM.1 to COM.4 Ports	3-9
3.4.1	Communication Cassette AFP7CCRS1 (RS-232C, 1-Channel Insulated Type)	3-9
3.4.2	Communication Cassette AFP7CCRS2 (RS-232C, 2-Channel Insulated Type)	3-9
3.4.3	Communication Cassette AFP7CCRM1 (RS-422 / RS-485, 1- Channel Insulated Type)	3-12
3.4.4	Communication Cassette AFP7CCRM2 (RS-422 / RS-485, 2- Channel Insulated Type)	3-15
3.4.5	Communication Cassette AFP7CCRS1M1 (RS-232C 1-Channel + RS-485 1-Channel Insulated Type)	3-18

3.1 Attaching a Communication Cassette


3.1 Attaching a Communication Cassette

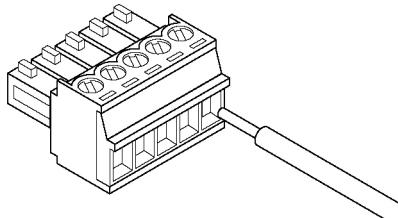
3.1.1 Attachment Instructions


When an optional Communication Cassette is to be used, attach it in the following procedures.

1 2 Procedure

1. Using a flathead screwdriver, remove the cover on the side of the CPU unit.
You will find four toggles.

2. Attach a desired Communication Cassette.



The illustration is the CPU unit. As for the Serial Communication Unit, the attachment procedure is the same.

3.2 Wiring of COM. Port Terminal Block

3.2.1 Suitable Wires and Tools

A screw-down connection type for terminal block is used for the communication port. Use the following items for wiring.

■ Suitable wires (strand wire)

Size	Nominal cross-sectional area
AWG #28 to 16	0.08 mm ² to 1.25 mm ²

■ Pole terminal with a compatible insulation sleeve

If a pole terminal is being used, the following models should be used.

Manufacturer	Cross-sectional area	Size	Part no.	
			With insulating sleeve	Without insulating sleeve
Phoenix Contact Co., Ltd.	0.25 mm ²	AWG #24	AI 0.25-6 BU	A 0.25-7
	0.34 mm ²	AWG #22	AI 0.34-6 TQ	A 0.34-7
	0.50 mm ²	AWG #20	AI 0.5-6 WH	A 0.5-6
	0.75 mm ²	AWG #18	AI 0.75-6 GY	A 0.75-6
	1.00 mm ²	AWG #18	-	A 1-6

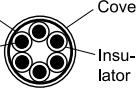
■ Pressure welding tool for pole terminals

Manufacturer	Model no.	
	Part no.	Product no.
Phoenix Contact Co., Ltd.	CRIMPFOX 6	1212034

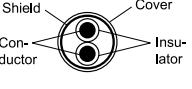
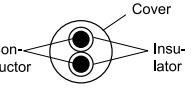
■ Screwdriver for terminal block

To tighten the terminals, use a screwdriver by Phoenix Contact (model No. Szs 0.4 x 2.5, product No. 1205037, blade size 0.4 x 2.5) or our screwdriver (part No. AFP0806). The tightening torque should be 0.22 to 0.25 N·m.

3.2 Wiring of COM. Port Terminal Block


■ Pressure welding tool for pole terminals

Product name	Product number	Number of poles	Manufacturer	Model number
CPU unit	AFP7CPS2R	5-pin terminal	Phoenix Contact Co., Ltd.	MC1.5/5-ST-3.5BK
	AFP7CPS3R AFP7CPS3RE AFP7CPS3RS AFP7CPS3RES AFP7CPS4RE AFP7CPS4RES	6-pin terminal		MC1.5/6-ST-3.5BK
Communication cassette	AFP7CCRS1 AFP7CCRS2 AFP7CCRM1 AFP7CCRM2 AFP7CCRS1M1	9-pin terminal		MC1.5/9-ST-3.5BK



3.2.2 Applicable Cable

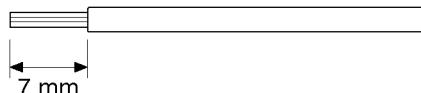
Use a cable as prescribed below.

■ Suitable wires (strand wire): For RS-232C / RS-422 communication

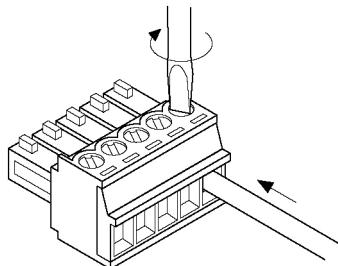
Classification	Cross-sectional view	Conductor		Insulator		Cable diam.	Sample appropriate cable
		Size	Resistance (at 20°C)	Material	Thickness		
Shielded multi-core cable	 Shield Conductor Insulator Cover	0.3 mm ² (AWG22) or larger	Max. 58.8 Ω/km	Vinyl chloride	Max. 0.3 mm	Approx. 6.6 mm	Onamba Co., Ltd. ONB-D6 × 0.3 mm ²

■ Suitable wires (strand wire): For RS-485 communication

Classification	Cross-sectional view	Conductor		Insulator		Cable diam.	Sample appropriate cable
		Size	Resistance (at 20°C)	Material	Thickness		
Shielded twisted pair	 Shield Conductor Insulator Cover	1.25 mm ² (AWG16) or larger	Max. 16.8 Ω/km	Polyethylene	Max. 0.5 mm	Approx. 8.5 mm	Hitachi Cable, Ltd. KPEV-S1.25 mm ² × 1P Belden Inc. 9860
		0.5 mm ² AWG20 or larger	Max. 33.4 Ω/km	Polyethylene	Max. 0.5 mm		
VCTF	 Conductor Insulator Cover	0.75 mm ² AWG18 or larger	Max. 25.1 Ω/km	Polychlorinated biphenyl	Max. 0.6 mm	Approx. 6.6 mm	VCTF0.75 mm ² × 2C (JIS)


Note

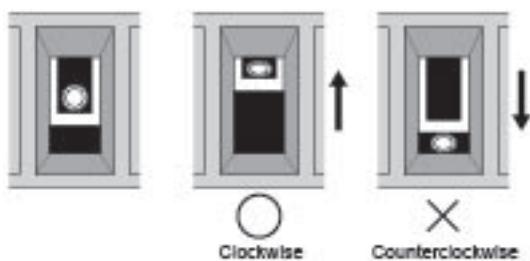
- Use shielded twisted pair cables.
- Use only one type of transmission cable. Do not mix more than 1 type.
- Twisted pair cables are recommended in noisy environments.
- When using shielded cable with crossover wiring for the RS-485 transmission line, ground one end.


3.2.3 Wiring Method

■ Wiring method

1. Remove a portion of the wire's insulation.

2. Insert wire into terminal hole until it stops. Tighten screw clockwise to fix wire in place.
(Tightening torque: 0.22 N·m to 0.25 N·m)


■ Precautions on wiring

The following precautions should be observed to avoid broken or disconnected wires.

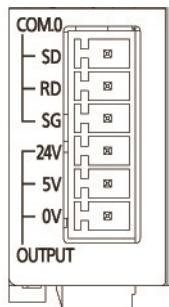
- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the core wires to connect them.
- Do not solder the core wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the terminal block socket construction, if the wire is fastened upon counter-clockwise rotation of the screw, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

3.2 Wiring of COM. Port Terminal Block

- If two wires are connected to the RS-485 terminal, use the same wire material of the same cross-sectional area (0.5 mm²).

3.3 Wiring for CPU Unit (GT Power Supply and COM.0 Port)

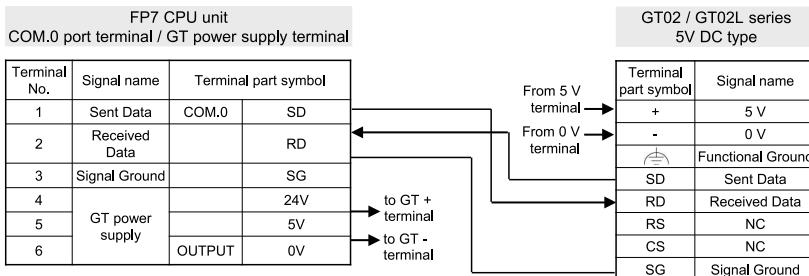
3.3.1 Handling of GT Power Supply Terminals

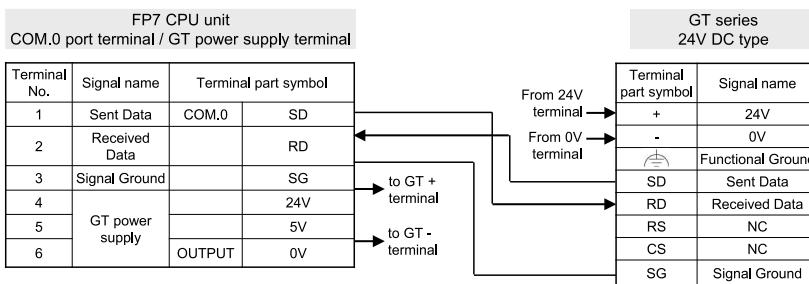

- GT power supply terminals can be used as power supply terminals for the GT series of our programmable displays.
- In accordance with the model to be used, use either 5V DC or 24V DC.

 Note

- GT power supply terminals (5V DC / 24V DC) are design exclusively for the GT series of our programmable displays. Do not use the terminals for other devices.
- GT power supply terminals and COM.0 port (RS-232C) are insulated inside.

3.3.2 Terminal Layouts and Examples of Wiring

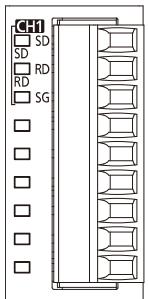

■ Layout for GT power supply terminals and COM.0 port terminals


Terminal no.	Terminal part symbol		Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	COM.0	SD	Sent data	PLC → External device	COM.0
2		RD	Received data	PLC ← External device	
3		SG	Signal ground	-	
4	OUTPUT	24 V	24 V	-	-
5		5 V	5 V	-	
6		0 V	0 V	-	

3.3 Wiring for CPU Unit (GT Power Supply and COM.0 Port)

■ Example of wiring (in the case of GT02 5V DC type)

■ Example of wiring (in the case of GT series 24V DC type)


Note

- The terminal layout on the display side differs for the existing models GT01 series.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

3.4.1 Communication Cassette AFP7CCRS1 (RS-232C, 1-Channel Insulated Type)

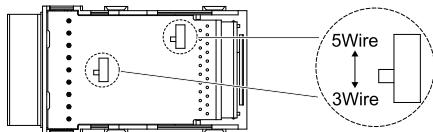
■ Terminal layout

Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	SD: Sent Data	PLC → External device	COM.1/COM.3
2		RD	RD: Received Data	PLC ← External device	
3		-	SG: Signal Ground	-	
4 to 9	-	-	-	-	-

(Note 1) Do not connect anything to Terminals No.4 through No.9.

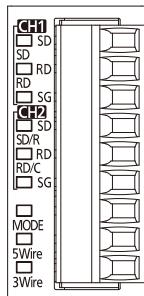
■ Example of wiring

3.4.2 Communication Cassette AFP7CCRS2 (RS-232C, 2-Channel Insulated Type)


■ Setting of application switch

Applications for use can be switched using a switch on the backplane for Communication Cassette AFP7CCRS2. Settings can be confirmed with "3Wire" or "5Wire" LED lamp lit on the front of the cassette.

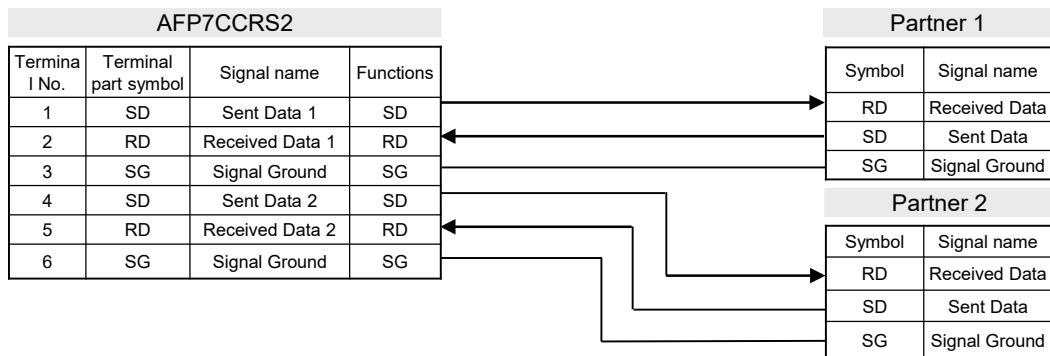
3-wire 2-channel RS-232C


3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

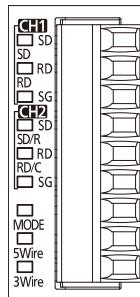
5-wire 1-channel RS-232C (RS/CS controlled)

(Note 1) The switch is factory-set to 3Wire (3-wire 2-channel RS-232C).

■ Terminal layout (in the setting of 3-wire 2-channel RS-232C)


Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Port that can be allocated in the software
1	CH1	SD	SD: Sent Data	PLC → External device	COM.1/COM.3
2		RD	RD: Received Data	PLC ← External device	
3		-	SG: Signal Ground	-	
4	CH2	SD / R	SD: Sent Data	PLC → External device	COM.2/COM.4
5		RD / C	RD: Received Data	PLC ← External device	
6	-	SG	SG: Signal Ground	-	
7	MODE	-	-	-	-
8	3-Wire	-	-	-	-
9	5-Wire	-	-	-	-

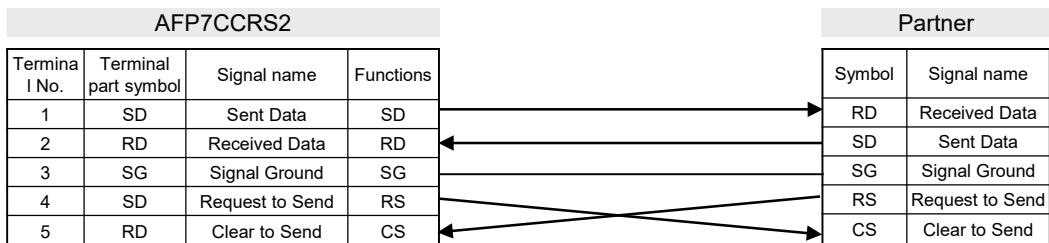
(Note 1) The route between CH1 and CH2 is insulated inside.


(Note 2) Do not connect anything to Terminals No.7 through No.9.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

■ Example of wiring (in the setting of 3-wire 2-channel RS-232C)

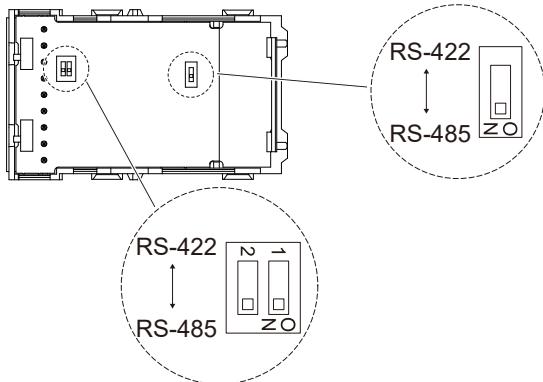
■ Terminal layout (in the setting of 5-wire 1-channel RS-232C RS/CS controlled)



Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	SD: Sent Data	PLC → External device	COM.1/COM.3
2		RD	RD: Received Data	PLC ← External device	
3		-	SG: Signal Ground	-	
4	CH2	SD / R	RS: Request to Send	PLC → External device	
5		RD / C	CS: Clear to Send	PLC ← External device	
6	-	SG	-	-	-
7	MODE	-	-	-	-
8	3-Wire	-	-	-	-
9	5-Wire	-	-	-	-

(Note 1) Do not connect anything to Terminals No.6 through No.9.

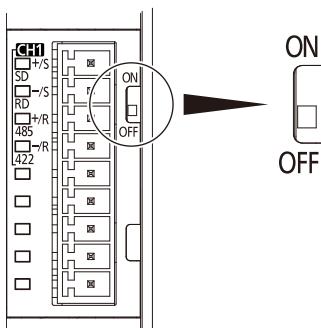
3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports


■ Example of wiring (in the setting of 5-wire 1-channel RS-232C RS/CS controlled)

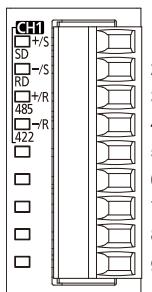
3.4.3 Communication Cassette AFP7CCRM1 (RS-422 / RS-485, 1-Channel Insulated Type)

■ Setting of application switch

Applications for use can be switched using a switch on the backplane for Communication Cassette AFP7CCRM1. Settings can be confirmed with LED lamps at the front of the cassette.


(Note 1) The switch is factory-set to RS-485.

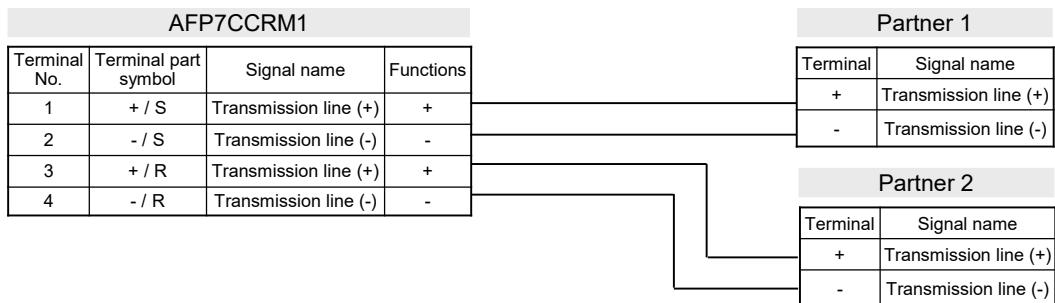
■ Settings for termination resistance selector switch


On the surface of Communication Cassette AFP7CCRM1 is located a termination resistance selector switch.

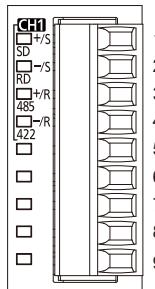
- When RS-422 is used: Turn ON the switch.
- When RS-485 is used: Turn ON the switch only when it is the end unit.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

■ Terminal layout (in the setting of RS-485)

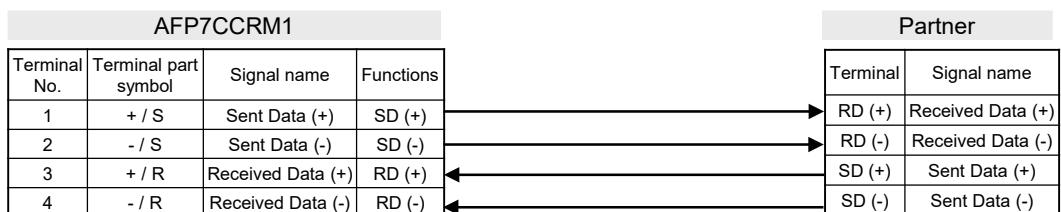

Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	+ / S	Transmission line (+)	-
2		RD	- / S	Transmission line (-)	
3		485	+ / R	Transmission line (+)	
4		422	- / R	Transmission line (-)	
5 to 9	-	-	-	-	-

(Note 1) In the setting of RS-485, Terminal No.1 and Terminal No.3, and Terminal No.2 and Terminal No.4 are respectively connected inside. They can be used as terminals for crossover wiring for the transmission cable.


(Note 2) Do not connect anything to Terminals No.5 through No.9.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

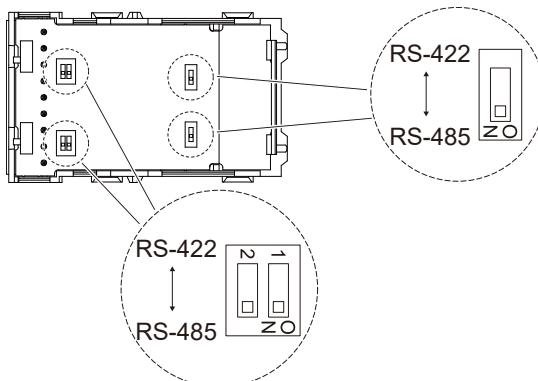
■ Example of wiring (in the setting of RS-485)


■ Terminal layout (in the setting of RS-422)

Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	+ / S	Sent Data (+)	PLC → External device
2		RD	- / S	Sent Data (-)	PLC → External device
3		485	+ / R	Received Data (+)	PLC ← External device
4		422	- / R	Received Data (-)	PLC ← External device
5 to 9	-	-	-	-	-

(Note 1) Do not connect anything to Terminals No.5 through No.9.

■ Example of wiring (in the setting of RS-422)

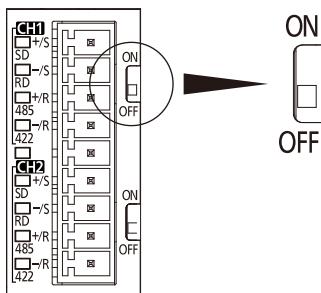


3.4.4 Communication Cassette AFP7CCRM2 (RS-422 / RS-485, 2-Channel Insulated Type)

■ Setting of application switch

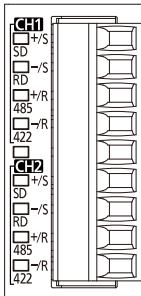
Applications for use can be switched using a switch on the backplane for Communication Cassette AFP7CCRM2.

Settings can be confirmed with LED lamps at the front of the cassette.



(Note 1) The switch is factory-set to RS-485.

■ Settings for termination resistance selector switch


On the surface of Communication Cassette AFP7CCRM2 is located a termination resistance selector switch.

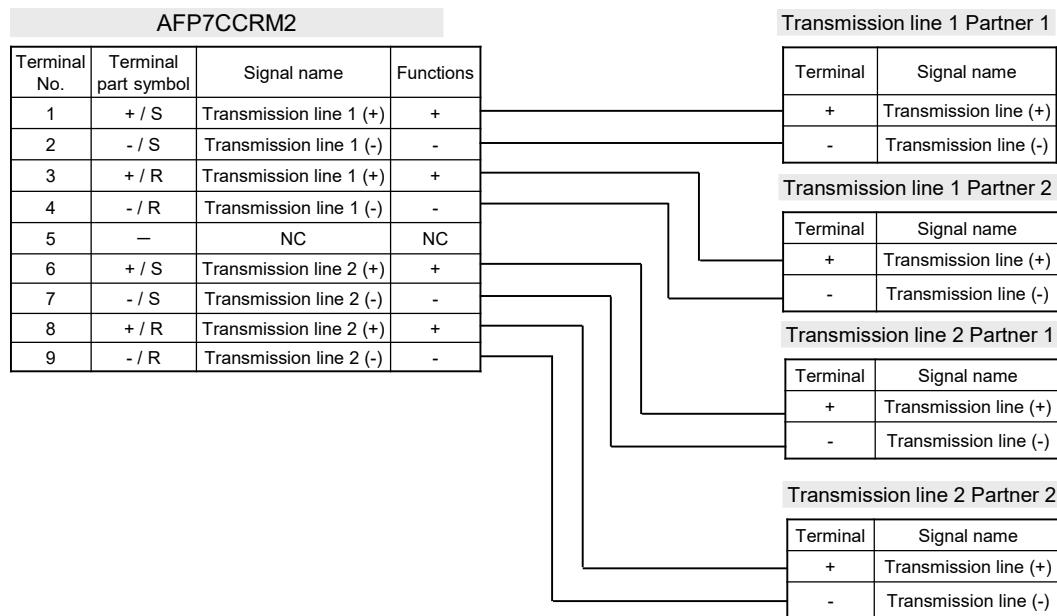
- When RS-422 is used: Turn ON the switch.
- When RS-485 is used: Turn ON the switch only when it is the end unit.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

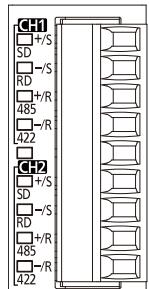
■ Terminal layout (in the setting of RS-485)

Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	+ / S	Transmission line (+)	-
2		RD	- / S	Transmission line (-)	
3		485	+ / R	Transmission line (+)	
4		422	- / R	Transmission line (-)	
5	-	-	-	-	-
6	CH2	SD	+ / S	Transmission line (+)	-
7		RD	- / S	Transmission line (-)	
8		485	+ / R	Transmission line (+)	
9		422	- / R	Transmission line (-)	

(Note 1) In the setting of RS-485, Terminal No.1 and Terminal No.3, and Terminal No.2 and Terminal No.4 are respectively connected inside. They can be used as terminals for crossover wiring for the transmission cable.


(Note 2) In the setting of RS-485, Terminal No.6 and Terminal No.8, and Terminal No.7 and Terminal No.9 are respectively connected inside. They can be used as terminals for crossover wiring for the transmission cable.

(Note 3) Do not connect anything to Terminal No.5.

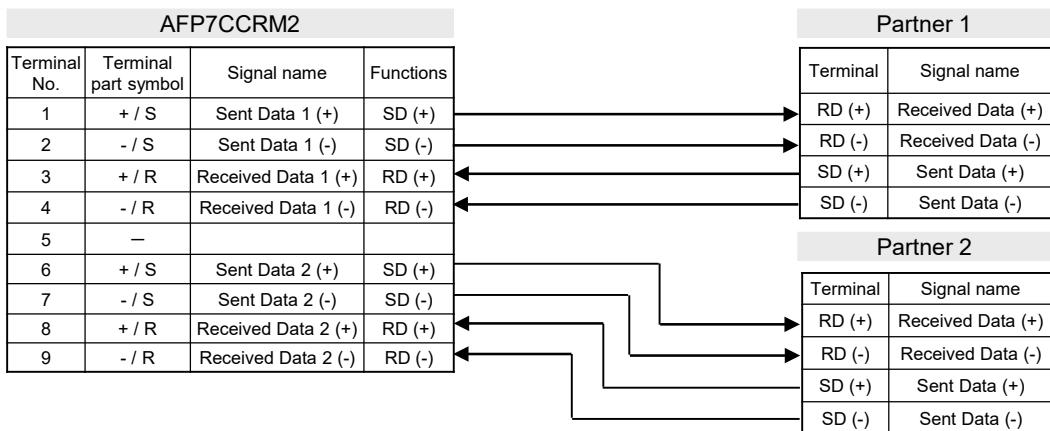

(Note 4) The route between CH1 and CH2 is insulated inside.

3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

■ Example of wiring (in the setting of RS-485)

■ Terminal layout (in the setting of RS-422)

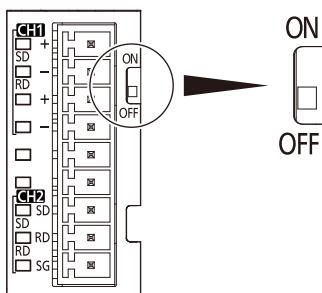
Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	+ / S	Sent Data (+)	PLC → External device COM.1/COM.3
2		RD	- / S	Sent Data (-)	
3		485	+ / R	Received Data (+)	
4		422	- / R	Received Data (-)	
5	-		-	-	-
6	CH2	SD	+ / S	Sent Data (+)	PLC → External device COM.2/COM.4
7		RD	- / S	Sent Data (-)	


3.4 Wiring for Communication Cassettes COM.1 to COM.4 Ports

Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
8		485	+ / R	Received Data (+)	PLC ← External device
9		422	- / R	Received Data (-)	PLC ← External device

(Note 1) Do not connect anything to Terminal No.5.

(Note 2) The route between CH1 and CH2 is insulated inside.

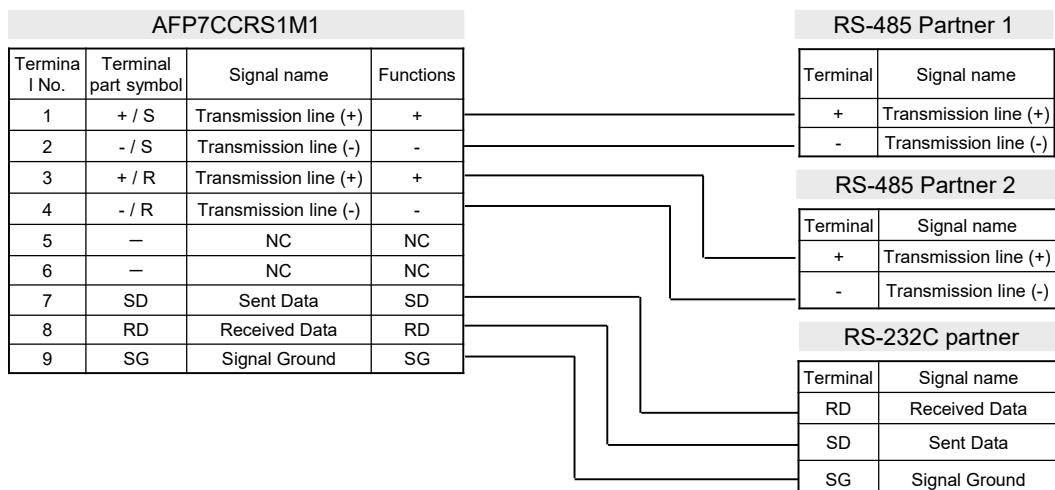

■ Example of wiring (in the setting of RS-422)

3.4.5 Communication Cassette AFP7CCRS1M1 (RS-232C 1-Channel + RS-485 1-Channel Insulated Type)

■ Settings for termination resistance selector switch

A termination resistance selector switch is located on the RS-485 side of the surface of Communication Cassette AFP7CCRS1M1. Turn ON the switch only when it is the end unit.

■ Terminal layout



Terminal no.	LED part symbol	Terminal part symbol	Functions that can be allocated	Signal direction	Ports that can be allocated in the software
1	CH1	SD	+	Transmission line (+)	-
2		RD	-	Transmission line (-)	-
3			+	Transmission line (+)	-
4			-	Transmission line (-)	-
5 to 6		-	-	-	-
7	CH2	SD	SD	Sent data	-
8		RD	RD	Received data	-
9		SG	SG	Signal ground	-

(Note 1) Terminal No.1 and Terminal No.3, and Terminal No.2 and Terminal No.4 are respectively connected inside.

(Note 2) Do not connect anything to Terminals No.5 and No.6.

■ Example of wiring

(MEMO)

4 I/O Allocation

4.1	Input/Output Signals Used for Communication.....	4-2
4.1.1	I/O Allocation of CPU Unit.....	4-2
4.1.2	I/O Allocation of Serial Communication Unit.....	4-4
4.2	Registration in I/O Map	4-7
4.2.1	Settings Using FPWIN GR7 (For CPU with built-in SCU)	4-7
4.2.2	Settings Using FPWIN GR7 (For Serial Communication Unit)	4-7

4.1 Input/Output Signals Used for Communication

4.1 Input/Output Signals Used for Communication

4.1.1 I/O Allocation of CPU Unit

■ Input signal

Input signal	Communication port	Name	Description	Effective operation mode
X0	For COM.1 Port	General-purpose communication		
X1	For COM.2 Port	Reception done flag	When the unit completes the data reception, it turns on (1). Waiting for data reception: 0, Reception completed: 1	General-purpose communication
X2	For COM.0 Port	Not used	Do not use this.	
X3	-	General-purpose communication		
X4	For COM.1 Port	Reception done (copy) flag	It turns on (1) if there are copied data when GPRECV instruction is executed. It turns off (0) when END instruction is executed. <small>(Note 1)</small> Reading completed: 1 No data to be read: 0	General-purpose communication
X5	For COM.2 Port	Not used	Do not use this.	
X6	For COM.0 Port	General-purpose communication		
X7	-	Reception done (copy) flag	It turns on (1) when the unit is set to the general-purpose communication mode. It turns off (0) in other modes.	General-purpose communication
X8	For COM.1 Port	Clear to send flag	Do not use this.	
X9	For COM.2 Port	Not used	Do not use this.	
XA	For COM.0 Port	Master communication	It turns on (1) when the unit is set to modes other than the PLC link mode or general-purpose communication mode. It turns off (0) in other modes.	MEWTOCOL MODBUS RTU
XB	-	Clear to send flag	Do not use this.	
XC	For COM.1 Port	Not used	Do not use this.	
XD	For COM.2 Port	Reset done	When the communication channel is reset under the output Y10 to Y12, the flag is turned on (1) once the resetting operation is completed. Resetting done: 1 Y10 to Y12 is off: 0	General-purpose communication
XE	For COM.0 Port	Not used	Do not use this.	
XF	-	CTS signal monitor	Status of the CTS signal sent from the device communicating with. Clear to send from COM.1 port = 0 Cannot send from COM.1 port = 1 The RTS signal can be controlled with Y14.	When RS/CS is set to valid in communication Block COM.1.
X10	For COM.1 Port			
X11	For COM.2 Port			
X12	For COM.0 Port			
X13	-			
X14	For COM.1 Port			

Input signal	Communication port	Name	Description	Effective operation mode
X15 to X1F	-	Not used	Do not use this.	

(Note 1) The general-purpose communication reception done (copy) flag is effective after the execution of the RECV instruction until one of the following instructions is executed. This flag does not remain ON across several scans.

Execute 1: END instruction (scan header), and 2: RECV instruction

■ Output signal

Output signal	Communication port	Name	Description	Effective operation mode
Y0	For COM.1 Port	Sending done result	Reports the results of sending in master communication or general-purpose communication. Normal completion: 0, Abnormal completion: 1	MEWTOCOL MODBUS RTU General-purpose communication
Y1	For COM.2 Port			
Y2	For COM.0 Port			
Y3 to Y7	-	Undefined	Do not turn on "undefined". (Default setting is 0.)	
Y8	For COM.1 Port	General-purpose communication Sending active flag	It turns on (1) during sending in the general-purpose communication mode. (Note 1) Sending done: 0, Sending: 1	General-purpose communication
Y9	For COM.2 Port			
YA	For COM.0 Port			
YB	-	Undefined	Do not turn on "undefined". (Default setting is 0.)	
YC	For COM.1 Port	Master communication Sending active flag	It turns on (1) during sending in the master communication mode. Sending done: 0, Sending: 1	MEWTOCOL MODBUS RTU
YD	For COM.2 Port			
YE	For COM.0 Port			
YF	-	Undefined	Do not turn on "undefined". (Default setting is 0.)	
Y10	For COM.1 Port	Request to reset CH	By turning on (1) Y10 to Y12, the communication channel can be reset. Without a request to reset = 0, With a request to reset = 1 After ON (1) is output and the completion of the reset is confirmed by X10 to X12, return to OFF (0). The reset is performed only once when this signal rises. This function can be used to delete unnecessary received data or to clear errors before starting normal reception. 1: Sending canceled 2: Reception canceled 3: Re-set communication parameters 4: Clear error information (only for errors that can be cleared)	General-purpose communication
Y11	For COM.2 Port			
Y12	For COM.0 Port			
Y13	-	Undefined	Do not turn on "undefined". (Default setting is 0.)	

4.1 Input/Output Signals Used for Communication

Output signal	Communication port	Name	Description	Effective operation mode
Y14	For COM.1 Port	Output RTS signal	By turning on (1) this output, RTS is controlled. Transmission from the device communicating with is permitted = 0 Transmission from the device communicating with is prohibited = 1 Monitor the CTS signal from the device communicating with using X14.	When RS/CS is set to valid in communication Cassette COM.1
Y15 to Y1F	-	Undefined	Do not turn on "undefined". (Default setting is 0.)	

(Note 1) When transmission is completed within one scan, it turns off when the GPSEND instruction is executed in the subsequent scan.

Note

- Each contact in the table above is used for reading the operation status. Do not write over it with a user program. (excluding Y10 - Y12 and Y14)

4.1.2 I/O Allocation of Serial Communication Unit

■ Input signal

Input signal	Communication port	Name	Description	Effective operation mode
X0	For COM.1 Port	General-purpose communication		
X1	For COM.2 Port	Reception done flag	When the unit completes the data reception, it turns on (1).	General-purpose communication
X2	For COM.3 Port		Waiting for data reception: 0, Reception completed: 1	
X3	For COM.4 Port			
X4	For COM.1 Port	General-purpose communication		
X5	For COM.2 Port	Reception done flag	It turns on (1) if there are copied data when GPRECV instruction is executed. It turns off (0) when END instruction is executed. (Note 1)	General-purpose communication
X6	For COM.3 Port		Reading completed: 1	
X7	For COM.4 Port		No data to be read: 0	
X8	For COM.1 Port	General-purpose communication		
X9	For COM.2 Port	Clear to send flag	It turns on (1) when the unit is set to the general-purpose communication mode. It turns off (0) in other modes.	General-purpose communication
XA	For COM.3 Port			
XB	For COM.4 Port			
XC	For COM.1 Port	Master communication		MEWTOCOL
XD	For COM.2 Port			MODBUS RTU

4.1 Input/Output Signals Used for Communication

Input signal	Communication port	Name	Description	Effective operation mode
XE	For COM.3 Port	Clear to send flag	communication mode. It turns off (0) in other modes.	
XF	For COM.4 Port			
X10	For COM.1 Port			
X11	For COM.2 Port			
X12	For COM.3 Port			
X13	For COM.4 Port			
X14	For COM.1 Port			
X16	For COM.3 Port	CTS signal monitor	When the communication channel is reset under the output Y10 to Y13, the flag is turned on (1) once the resetting operation is completed. Resetting done: 1 Y10 to Y12 is off: 0 Status of the CTS signal sent from the device communicating with. Clear to send from COM.1/COM.3 port = 0 Cannot send from COM.1/COM.3 port = 1 The RTS signal can be controlled with Y14/Y16	General-purpose communication
X15				
X17 to X1F	-	Not used	Do not use this.	

(Note 1) The general-purpose communication reception done (copy) flag is effective after the execution of the RECV instruction until one of the following instructions is executed. This flag does not remain ON across several scans.

Execute 1: END instruction (scan header), and 2: RECV instruction

(Note 2) The I/O numbers actually allocated are the numbers based on the starting word number allocated to the unit.

Example) When the starting word number for the unit is "10", the general-purpose communication reception done flag for COM.1 port is X100.

■ Output signal

Output signal	Communication port	Name	Description	Effective operation mode
Y0	For COM.1 Port			
Y1	For COM.2 Port			
Y2	For COM.3 Port			
Y3	For COM.4 Port			
Y4 to Y7	-	Undefined	Reports the results of sending in master communication or general-purpose communication. Normal completion: 0, Abnormal completion: 1	MEWTOCOL MODBUS RTU General-purpose communication
Y8	For COM.1 Port			
Y9	For COM.2 Port			
YA	For COM.3 Port			
YB	For COM.4 Port			
YC	For COM.1 Port			
YD	For COM.2 Port			
YE	For COM.3 Port			

4.1 Input/Output Signals Used for Communication

Output signal	Communication port	Name	Description	Effective operation mode
YF	For COM.4 Port	flag		
Y10	For COM.1 Port	Request to reset CH	By turning on (1) Y10 to Y13, the communication channel can be reset.	General-purpose communication
Y11	For COM.2 Port		Without a request to reset = 0, With a request to reset = 1	
Y12	For COM.3 Port		After ON (1) is output and the completion of the reset is confirmed by X10 to X13, return to OFF (0). The reset is performed only once when this signal rises. This function can be used to delete unnecessary received data or to clear errors before starting normal reception.	
Y13	For COM.4 Port		1: Sending canceled 2: Reception canceled 3: Re-set communication parameters 4: Clear error information (only for errors that can be cleared)	
Y14	For COM.1 Port	Output RTS signal	By turning on (1) this output, RTS is controlled.	When RS/CS is set to valid in communication Cassette COM.1/COM.3
			Transmission from the device communicating with is permitted = 0	
Y16	For COM.3 Port		Transmission from the device communicating with is prohibited = 1 Monitors the CTS signal from the device communicating with using X14/X16.	
Y15	-	Undefined		
Y17 to Y1F			Do not turn on "undefined". (Default setting is 0.)	

(Note 1) When transmission is completed within one scan, it turns off when the GPSEND instruction is executed in the subsequent scan.

(Note 2) The I/O numbers actually allocated are the numbers based on the starting word number allocated to the unit.

Example) When the starting word number for the unit is "10", the sending done result flag for COM.1 port is Y100.

Note

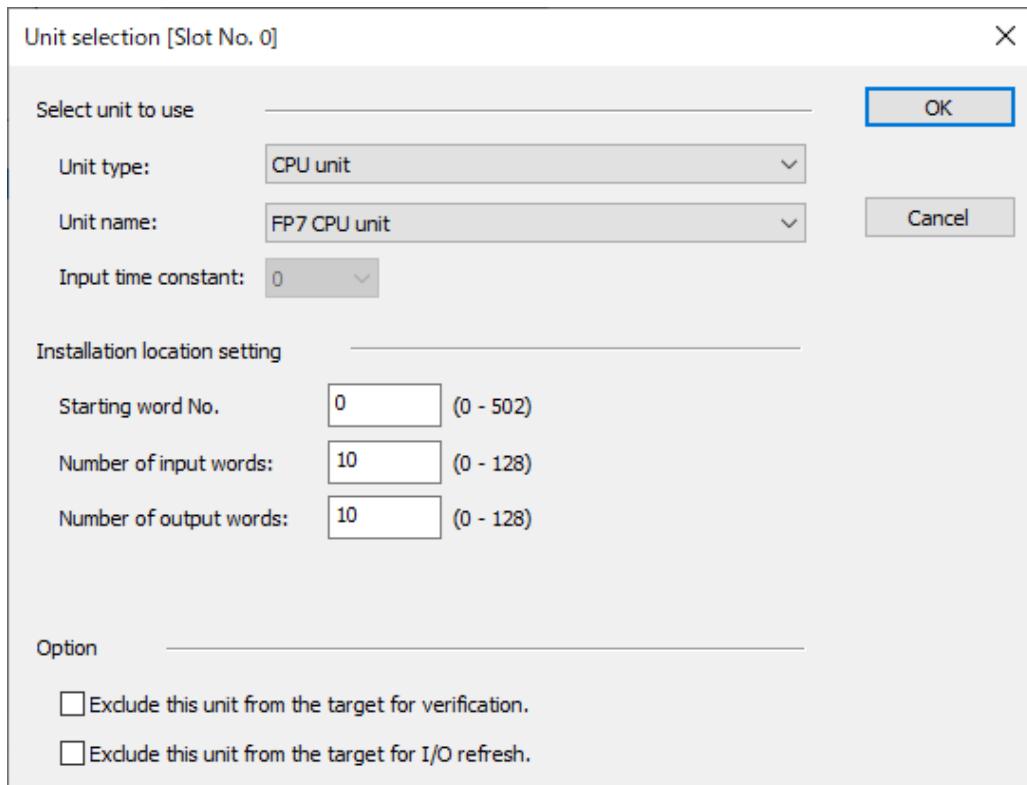
- Each contact in the table above is used for reading the operation status. Do not write over it with a user program. (excluding Y10 - Y14 and Y16)

4.2 Registration in I/O Map

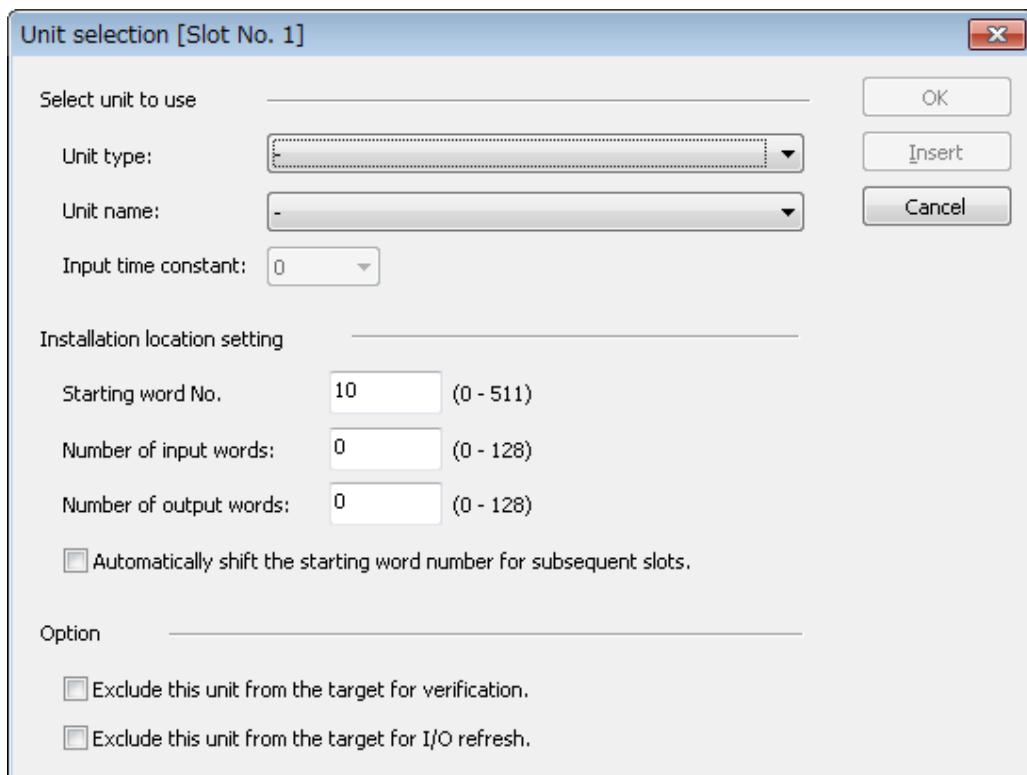
4.2.1 Settings Using FPWIN GR7 (For CPU with built-in SCU)

- For the CPU with built-in SCU, there is no need to set with FPWIN GR7 because the following fixed areas are allocated.

Unit type	Model number	No. of occupied words (No. of occupied points)	
		Input	Output
CPU unit	CPU with built-in SCU	Common	2 words (32 points) WX0 to WX1 Fixed 2 words (32 points) WY0 to WY1 Fixed


4.2.2 Settings Using FPWIN GR7 (For Serial Communication Unit)

The explanation below shows the case that the serial communication unit is registered in the slot number 1.


1 2 Procedure

- Select **Options>FP7 Configuration** in the menu bar.
The "FP7 Configuration" dialog box opens.
- Select "I/O map" in the left pane.
The "I/O map" dialog box is displayed.
- Double-click Slot No. 0.
The "Unit selection [Slot No. 0]" dialog box is displayed.
- Select "CPU unit" for Unit type, select a CPU unit used for Unit name, and press the [OK] button.
The "CPU unit" is registered. Only CPU unit can be registered in Slot No. 0. Slot No.1 and subsequent numbers cannot be set unless Slot No. 0 is set.

4.2 Registration in I/O Map

5. Double-click Slot No. 1 in the "I/O map" dialog box.
The "Unit selection [Slot No. 1]" dialog box is displayed.
6. Select "Communications" for Unit type, select "SCU unit" for Unit name, and press the [OK] button.
"SCU unit" is registered in the I/O map.

The set conditions are reflected in the project being edited.

(MEMO)

5 Setting and Confirming Communication Conditions

5.1 Setting Applications and Communication Conditions	5-2
5.1.1 Applications to be Set for Each Port	5-2
5.1.2 Conditions to be Set for Each Port.....	5-2
5.2 Setting Communication Conditions.....	5-3
5.2.1 Settings Using FPWIN GR7 (For CPU with built-in SCU)	5-3
5.2.2 Settings Using FPWIN GR7 (For Serial Communication Unit)	5-4

5.1 Setting Applications and Communication Conditions

5.1 Setting Applications and Communication Conditions

5.1.1 Applications to be Set for Each Port

■ Available functions for each communication port

Communication function to be used	Allocated communication port				
	COM.0	COM.1	COM.2	COM.3	COM.4
PLC Link		•			
MEWTOCOL7-COM ^(Note 1)	Master	•	•	•	•
	Slave	•	•	•	•
MODBUS RTU	Master	•	•	•	•
	Slave	•	•	•	•
General-purpose communication	•	•	•	•	•

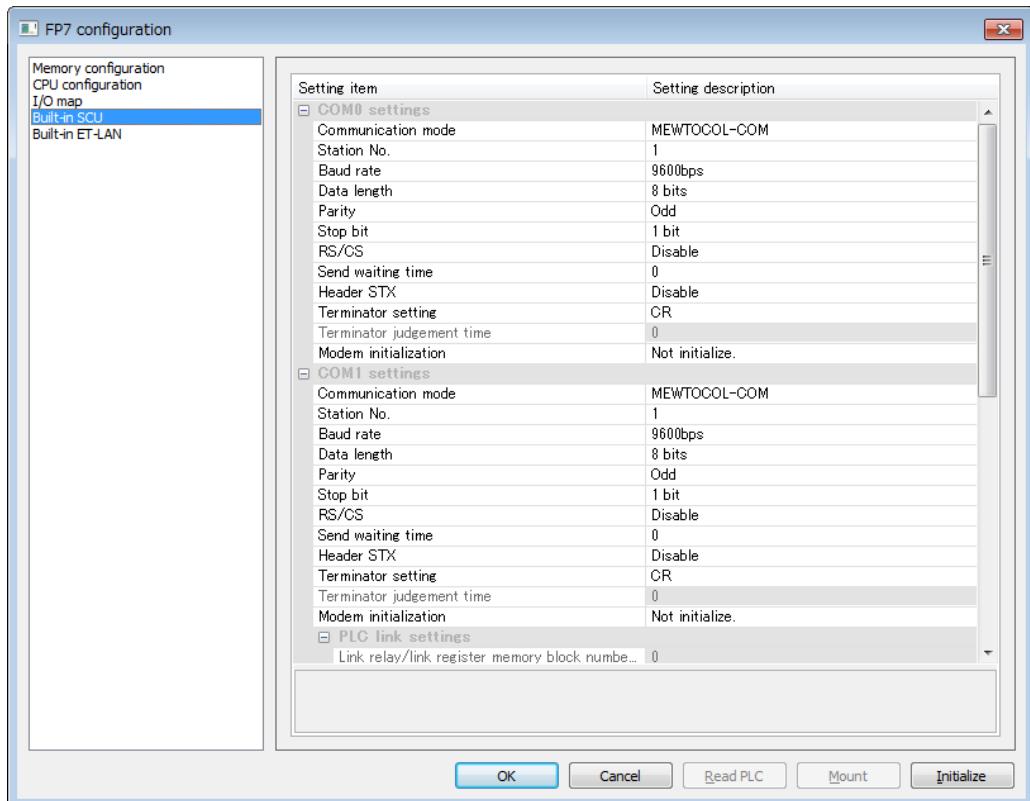
(Note 1) In MEWTOCOL7-COM, there is no master communication function.

5.1.2 Conditions to be Set for Each Port

■ Communication condition

Communication port	Setting range	Default
Station no.	1 to 99 (MEWTOCOL-COM) 1 to 999 (MEWTOCOL7-COM) 1 to 247 (MODBUS RTU)	1
Baud rate	300,600,1200,2400,4800,9600,19200,38400,57600,115200,230400	9600
Communication format	Data length	7 bit, 8 bits
	Parity	None, Odd, Even
	Stop bit	1 bit, 2 bits
	End code	CR, CR+LF, ETX, or time (0.01 ms to 100 ms, by the unit of 0.01 ms)
	Start code	With STX, Without STX
RS/CS controlled	No/Yes	Invalid
Send waiting time	0 to 100 ms	0 ms
Modem initialization	Invalid, Valid, Re-initialization	Invalid

(Note 1) Communication conditions that can be set vary by the mode to be used (PLC link, MEWTOCOL communication, MODBUS RTU, general-purpose communication).


5.2 Setting Communication Conditions

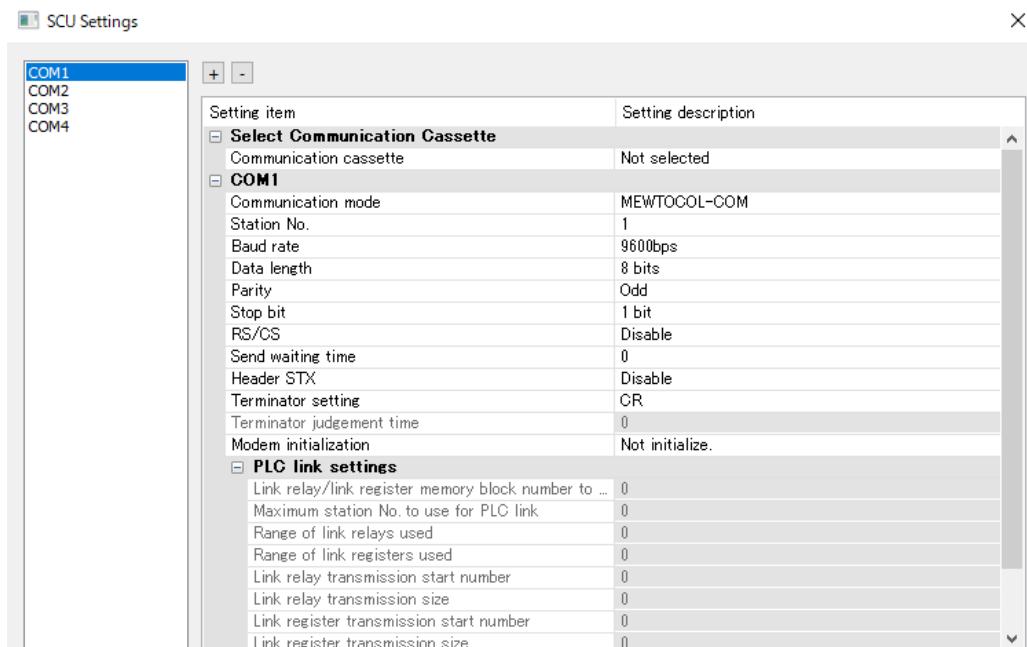
5.2.1 Settings Using FPWIN GR7 (For CPU with built-in SCU)

Applications and communication conditions for each communication port should be set using the tool software FPWIN GR7.

12 Procedure

1. From the menu bar, select **Option>FP7 Configuration**.
The "FP7 Configuration" dialog box opens.
2. Select "Built-in SCU".
Setting items for "Built-in SCU" appear.

3. Set communication conditions, and press the [OK] button.
Set conditions are incorporated into the project that is being edited.


5.2 Setting Communication Conditions

5.2.2 Settings Using FPWIN GR7 (For Serial Communication Unit)

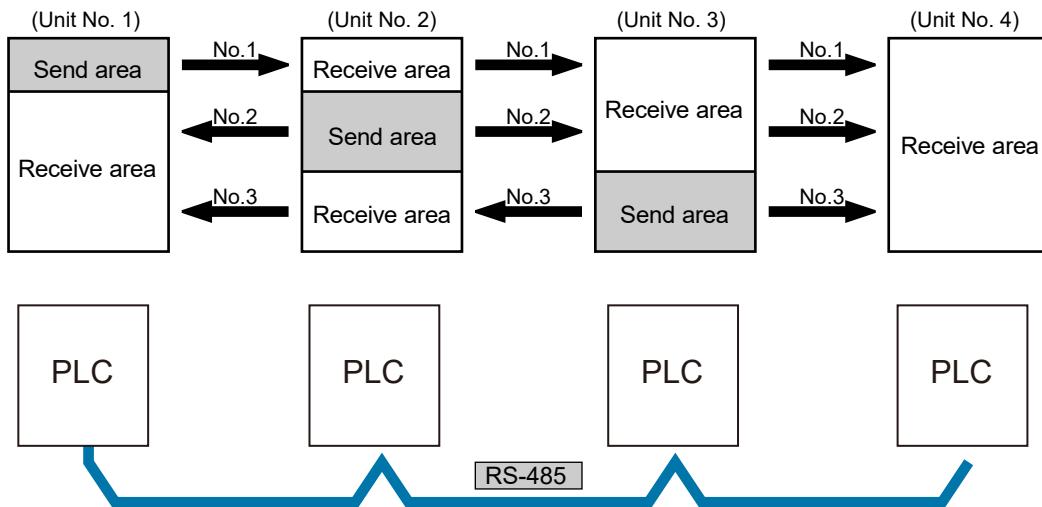
- Applications and communication conditions for each communication port should be set using the tool software FPWIN GR7.
- The explanation below shows the case that the serial communication unit is registered in the slot number 1.

1 2 Procedure

1. Select **Options>FP7 Configuration** in the menu bar.
The "FP7 Configuration" dialog box appears.
2. Select "I/O map" in the left pane.
The "I/O map" dialog box is displayed.
3. Select the Slot No. in which SCU unit is registered in the "I/O map" dialog box, and press the [Advanced] button.
The "SCU Unit Settings" dialog box is displayed.

4. Select "COM. No." in the left pane.
Setting items available for each COM. number are displayed.
5. Set communication conditions, and press the [OK] button.
The set conditions are reflected in the project being edited.

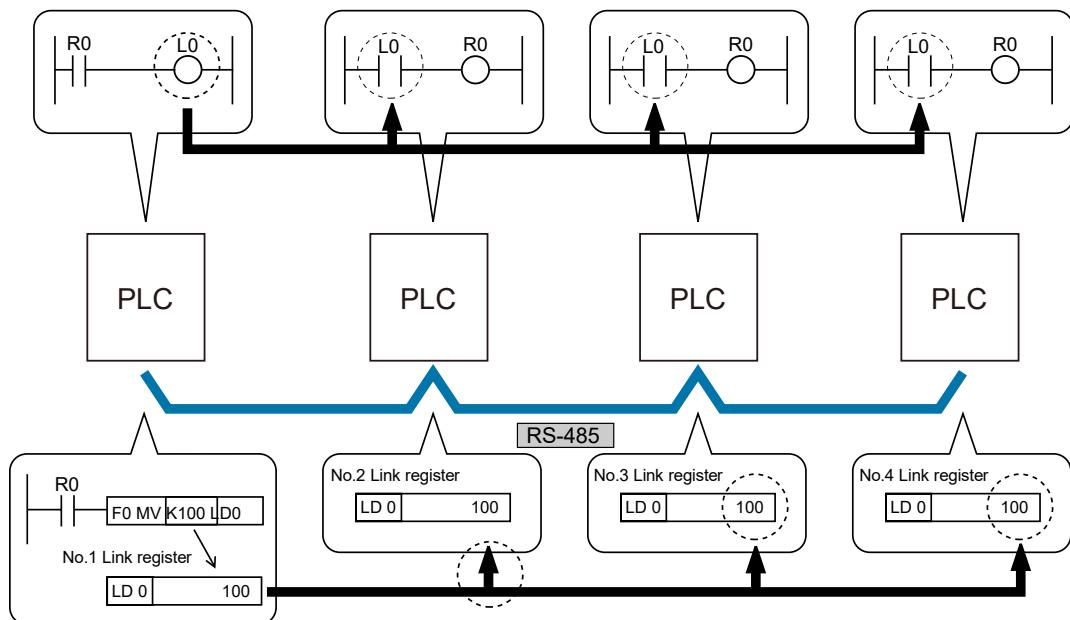
6 PLC Link


6.1	Operation of PLC Link MEWNET-W0	6-2
6.1.1	Operation Overview of PLC Link.....	6-2
6.1.2	Roles of Link Relays and Link Registers	6-2
6.2	Configuration Required for PLC Link	6-4
6.2.1	Setup Procedure (For CPU with Built-in SCU).....	6-4
6.2.2	Setup Procedure (For Serial Communication Unit).....	6-5
6.2.3	List of Setting Items	6-6
6.3	Setting Items for PLC Link	6-8
6.3.1	Unit Number Setting.....	6-8
6.3.2	Setting of the Largest Unit Number.....	6-8
6.3.3	Memory Block No. of Link Relays and Link Registers to be Used ...	6-8
6.3.4	Ranges of Link Relays and Link Registers to be Used.....	6-9
6.3.5	Link Relay Transmission Start Number and Sending Size	6-9
6.3.6	Link Register Transmission Start Number and Sending Size	6-10
6.4	Response Time of PLC Link	6-13
6.4.1	Response Time of One Transmission Cycle	6-13
6.4.2	Response Time when There are Units that have not been Added to the Link	6-14

6.1 Operation of PLC Link MEWNET-W0

6.1 Operation of PLC Link MEWNET-W0

6.1.1 Operation Overview of PLC Link


- “Link relays (L)” and data registers “link registers (LD)” are shared between connected PLCs.
- In the case of link relays, if the link relay contact of one PLC turns ON, the same link relays also turn ON in all PLCs on the same network.
- Likewise, in the case of link registers, if the content of a link register in one PLC is rewritten, the value of the same link register is changed in all PLCs on the same network.

6.1.2 Roles of Link Relays and Link Registers

■ Link relay

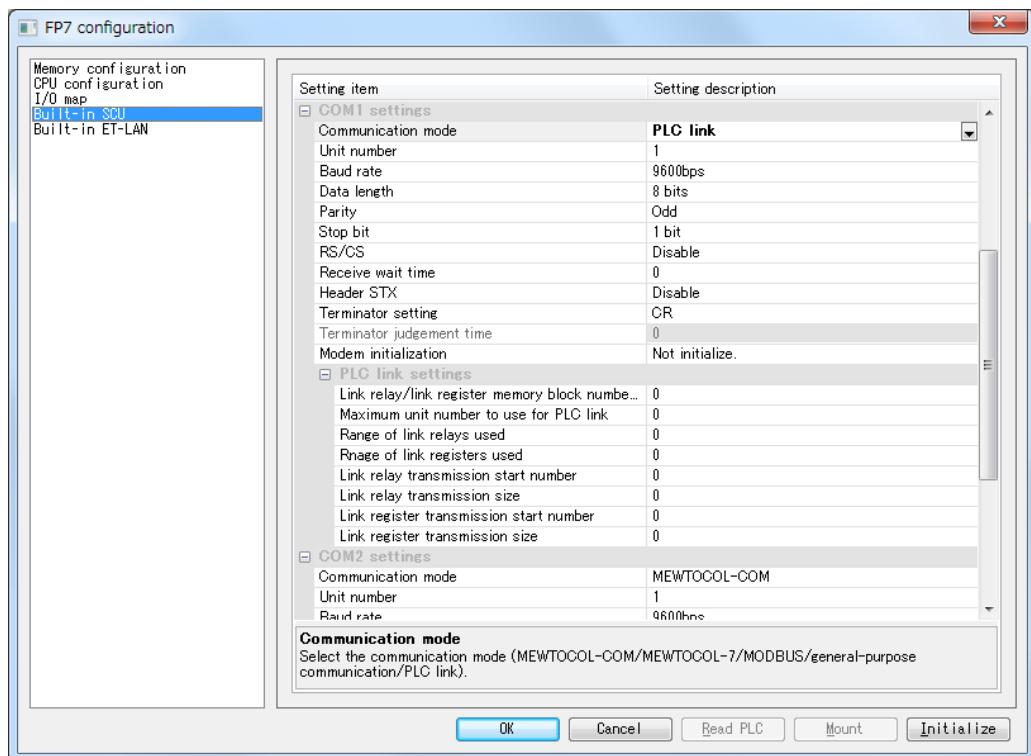
If link relay L0 in the master unit (No.1) is turned ON, the state change is fed back to link relay L0 that has the same number in other units, and R0 is outputted from these units.

■ Link register

When a constant 100 is written into LD0 of the master unit (No. 1), the content of LD0 of every other unit is also changed to constant 100.

6.2 Configuration Required for PLC Link

6.2 Configuration Required for PLC Link

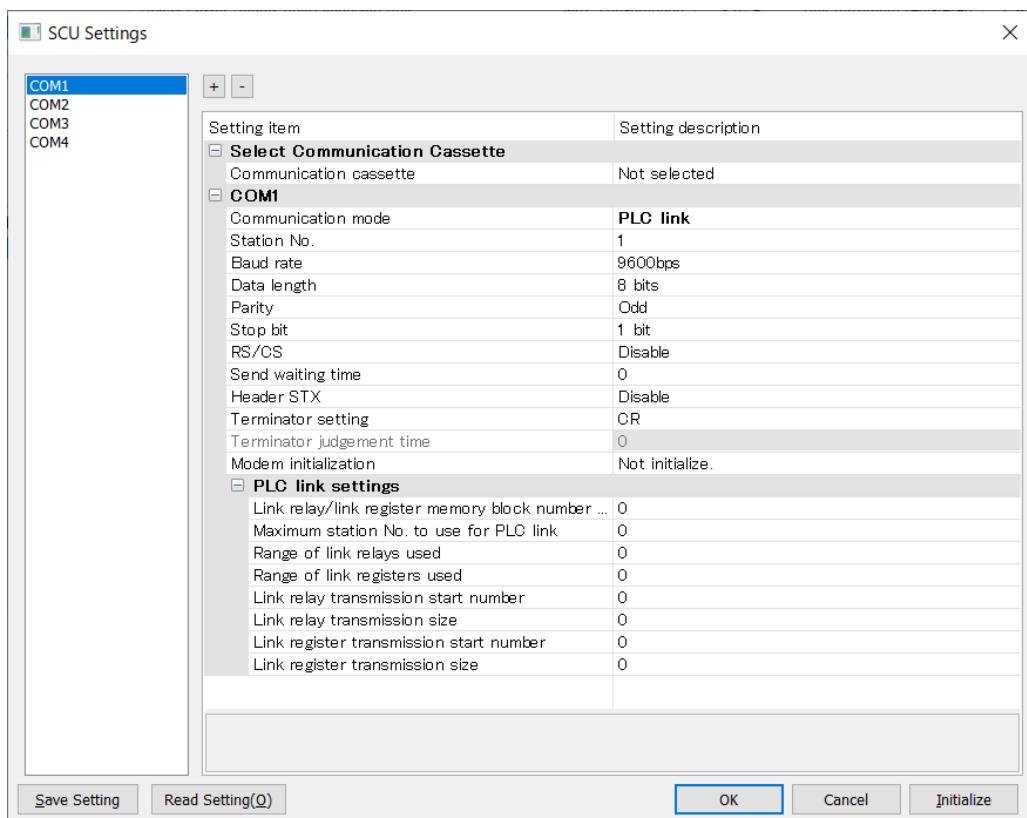

6.2.1 Setup Procedure (For CPU with Built-in SCU)

- In order to use the PLC link function, setting of communication conditions and allocation of memories are required.
- Settings should be performed by the programming tool FPWIN GR7.

1 2

Procedure

1. From the menu bar, select **Option>FP7 Configuration**.
The "FP7 Configuration" dialog box appears.
2. From the left pane of the dialog box, select "Built-in SCU".
Setting items for each COM. port are displayed.
3. Select "PLC link" from "Communication mode" in setting items under "COM.1 settings".
Setting items for "PLC link" become valid.


4. Specify conditions to be allocated to each setting item for "Station no." and "PLC link settings" under "COM.1 settings", and press the [OK] button.
The settings are registered in the project.

6.2.2 Setup Procedure (For Serial Communication Unit)

- In order to use the PLC link function, setting of communication conditions and allocation of memories are required.
- Settings should be performed by the programming tool FPWIN GR7.
- The following procedure describes the case that the serial communication unit has been already registered in the I/O map.

1 2 Procedure

1. Select **Options>FP7 Configuration** in the menu bar.
The "FP7 Configuration" dialog box appears.
2. From the left pane of the dialog box, select "I/O map".
The "I/O map" dialog box is displayed.
3. Select a unit used for PLC link, and press the [Advanced] button.
The "SCU Unit Settings" dialog box is displayed.
4. Select "COM.1 settings" from the left pane, and select "PLC link" in "Communication mode".

5. Set conditions assigned to each item in "PLC link settings", and press the [OK] button.

6.2 Configuration Required for PLC Link

The settings are registered in the project.

Info.

- For details of "PLC link settings", please see the explanation on the next page onward.

6.2.3 List of Setting Items

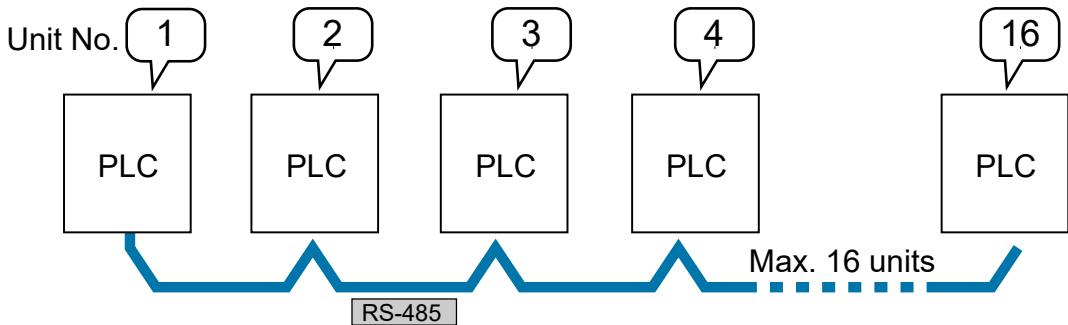
■ List of setting items (COM.1 settings)

Setting items	Settings when the PLC link function is used	Remark
Communication mode	PLC Link	
Station no.	1 to 16	Set a specific station no. for PLC to be connected to the PLC link.
Baud rate	115200 bps	
Data length	8 bit	
Parity	Odd	
Stop bit	1 bit	
RS/CS	Invalid	
Send waiting time	0	Regardless of settings in FPWIN GR7, the FP7 CPU unit or SCU itself performs automatic settings.
Start code STX	Invalid	
Terminator setting	CR	
Terminator judgment time	0	
Modem initialization	Do not initialize	

■ List of setting items (PLC link settings)

Setting items	Setting range	Setting method
Memory block numbers for link relays and link registers to be used	0 or 1	Specify the device No. range for link relays and link registers to be used in a block.
Maximum station no. to be used for PLC link	0 to 16	Set the Max. station no. for PLC to be connected to the PLC link.
Range of link relays used	0 to 64 words	
Range of link registers used for PLC link	0 to 128 words	
Starting no. for link relay send area	0 to 63	Specify the device No. range for link relays and link registers to be used.
Size of link relay send area	0 to 64 words	
Starting No. for link register send area	0 to 127	

Setting items	Setting range	Setting method
Size of link register send area	0 to 127 words	


 Note

- When you want to change the Communication mode set in the PLC link to another mode, download the changed project to the CPU unit in FPWIN GR7, and turn on power to the FP7 CPU unit again.

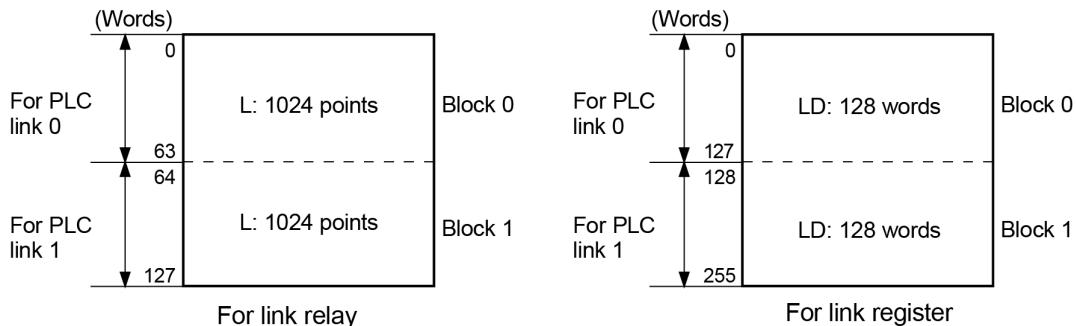
6.3 Setting Items for PLC Link

6.3.1 Unit Number Setting

- In a PLC link that connects multiple PLCs on the same transmission line, a unit number must be assigned to each PLC for identification.
- A unit number is a unique number used to identify PLCs on a network. The same number must not be used for more than one PLC on the same network.

6.3.2 Setting of the Largest Unit Number

- Specify the largest PLC unit number used for PLCs connected to the PLC link.
- The smaller unit numbers are, the relatively shorter transmission time is required.

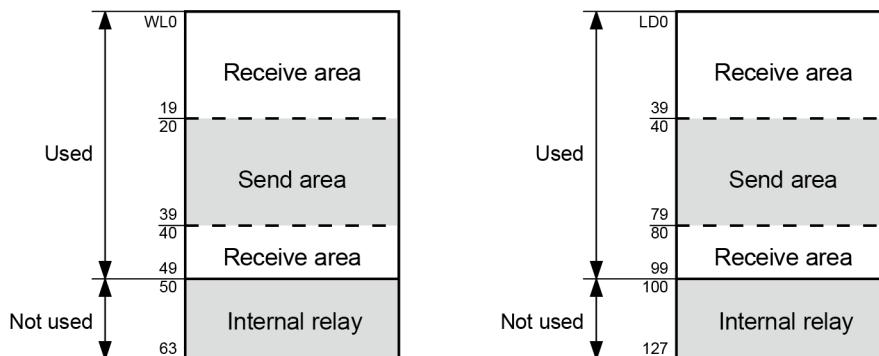

!

- Unit numbers should be set sequentially and consecutively, starting from 1, with no breaks between them. If there is a missing unit number, the transmission time will be longer.
- Specify the same value as the largest PLC unit number for all units connected in a PLC link.

6.3.3 Memory Block No. of Link Relays and Link Registers to be Used

- The memory areas of link relays and link registers are divided for PLC link 0 and for PLC link 1. Either area can be selected, and max. 1024 points (64 words) can be used for link relays, and max. 128 words can be used for link registers.
- Specify "0" for using memory blocks in the first half, and "1" for using memory blocks in the latter half.

Structure of a link area

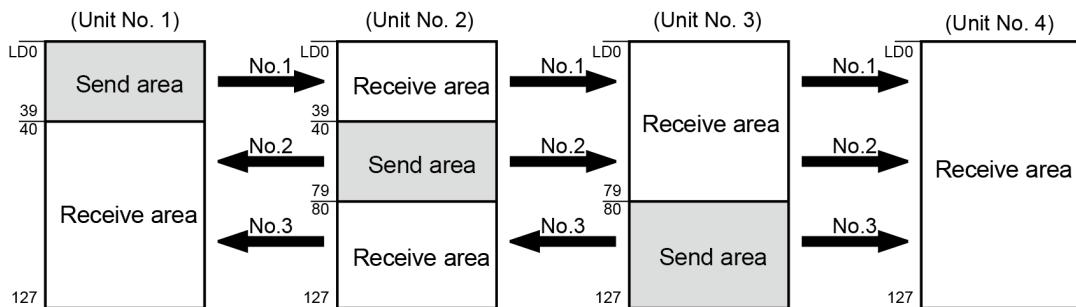


6.3.4 Ranges of Link Relays and Link Registers to be Used

- Specify the ranges of memory areas of link relays and link registers to be actually used.
- Link relays and link registers that are not to be used for linking may be used in place of internal relays and data registers.

Example) Setting of ranges for use (in the case of PLC link 0)

- The diagram below indicates a case when “50” (50 words from WL0 to WL49) is specified for the range of link relay, and “100” (100 words from LD0 to LD99) for the range of link register to be used.

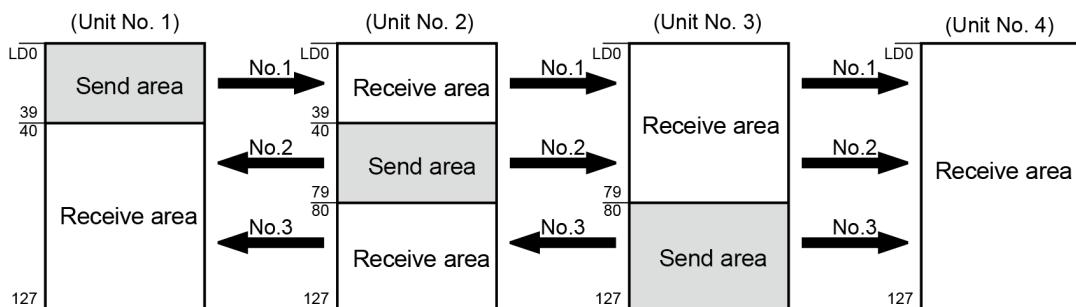

- As the range to be used in PLC link 0, specify “64” (64 words) when all link relays are to be used, and “128” (128 words) when all link registers are to be used.

6.3.5 Link Relay Transmission Start Number and Sending Size

- The memory areas of link relays are divided into send areas and receive areas.
- Link relays are transmitted from the send area of a PLC to the receive area of another PLC. The receiving PLC must have the same link relay No. in its receive area as the sending PLC.

6.3 Setting Items for PLC Link

Example) Setting of the link relay transmission start number and sending size (in the case of memory block No. 0)

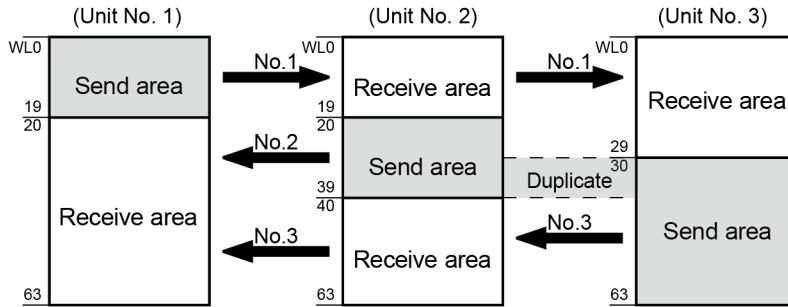

■ List of setting items (for PLC link setting)

Setting item	Setting range	Unit No. and setting method			
		No.1	No.2	No.3	No.4
Memory block No. of link relays and link registers to be used	0 or 1	0	0	0	0
Max. unit No. used for PLC link	0 to 16	4	4	4	4
Range of link relays used	0 to 64 words	64	64	64	64
Transmission start No. for link relays	0 to 63	0	20	40	0
Size of link relay send area	0 to 64 words	20	20	24	0

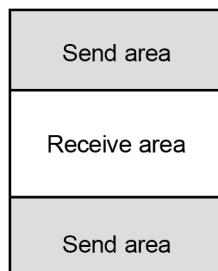
6.3.6 Link Register Transmission Start Number and Sending Size

- The memory areas of link registers are divided into send areas and receive areas.
- Link registers are transmitted from the send area of a PLC to the receive area of another PLC. The receiving PLC must have the same link register No. in its receive area as the sending PLC.

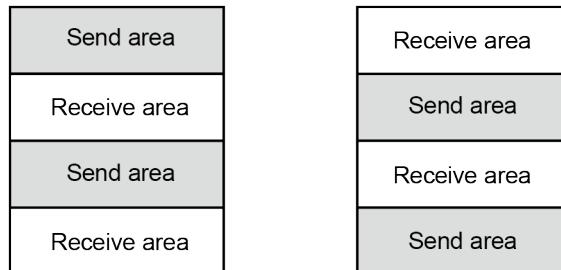
Example) Setting of the link register transmission start number and sending size (in the case of memory block No. 0)


■ List of setting items (for PLC link setting)

Setting item	Setting range	Unit No. and setting method			
		No.1	No.2	No.3	No.4
Memory block No. of link relays and link registers to be used	0 or 1	0	0	0	0
Max. unit number used for PLC link	0 to 16	4	4	4	4
Range of link registers used	0 to 128 words	128	128	128	128
Transmission start no. for link registers	0 to 127	0	40	80	0
Size of link register send area	0 to 127 words	40	40	48	0


6.3 Setting Items for PLC Link

- If a mistake is made when allocating a link area, be aware that an error will result, and communication will be disabled.
- Avoid overlapping send areas.


In the following example, there is an overlapping area between link relays No. 2 and 3. This will cause an error and disable communication.

- Allocations as shown below are not possible for link relays or for link registers:
Send area is split in a PLC

Send and receive areas are split into multiple segments

6.4 Response Time of PLC Link

6.4.1 Response Time of One Transmission Cycle

The maximum value of one transmission cycle time (T) can be calculated using the following formula.

■ Calculation formula

$$T_{\max.} = \underbrace{Ts_1 + Ts_2 + \dots + Ts_n}_{(1) Ts \text{ (transmission time per unit)}} + \underbrace{T_{lt} + T_{so} + T_{lk}}_{\begin{array}{l} (2) T_{lt} \text{ (link table sending time)} \\ (3) T_{so} \text{ (master unit scan time)} \\ (4) T_{lk} \text{ (link addition processing time)} \end{array}}$$

(1) Ts (transmission time per unit)

Calculation formula	$Ts = \text{Scan time} + T_{pc} \text{ (PLC link sending time)}$
	$T_{pc} = T_{tx} \text{ (sending time per byte)} \times P_{cm} \text{ (PLC link sending byte size)}$
	$T_{tx} = 1 / (\text{baud rate kbps} \times 1000) \times 11 \text{ ms} \dots \text{approx. } 0.096 \text{ ms when } 115.2 \text{ kbps}$
	$P_{cm} = 23 + (\text{number of relay words} + \text{number of register words}) \times 4 \text{ (an ASCII code needs multiplication by four)}$

(2) Tlt (link table sending time)

Calculation formula	$T_{lt} = T_{tx} \text{ (sending time per byte)} \times L_{tm} \text{ (link table sending size)}$
	$T_{tx} = 1 / (\text{baud rate kbps} \times 1000) \times 11 \text{ ms} \dots \text{approx. } 0.096 \text{ ms when } 115.2 \text{ kbps}$
	$L_{tm} = 13 + 2 \times n \text{ (n = No. of added units)}$

(3) Tso (master unit scan time)

To be checked using tool software.

(4) Tlk (link addition processing time)

Calculation formula	If all units have been added, $T_{lk} = 0$ $T_{lk} = T_{lc} \text{ (link addition command sending time)} + T_{wt} \text{ (addition waiting time)}$ $+ T_{ls} \text{ (sending time for command to stop transmission if link error occurs)} + T_{so} \text{ (master unit scan time)}$
	$T_{lc} = 10 \times T_{tx} \text{ (sending time per byte)}$ $T_{tx} = 1 / (\text{baud rate kbps} \times 1000) \times 11 \text{ ms} \dots \text{approx. } 0.096 \text{ ms when } 115.2 \text{ kbps}$ $T_{wt} = \text{initial value } 400 \text{ ms}$ $T_{ls} = 7 \times T_{tx} \text{ (sending time per byte)}$ $T_{tx} = 1 / (\text{baud rate kbps} \times 1000) \times 11 \text{ ms} \dots \text{approx. } 0.096 \text{ ms when } 115.2 \text{ kbps}$ $T_{so} = \text{master unit scan time}$

■ Calculation example

	Condition	Calculation process	One transmission cycle time (T)
1	16-unit link with all units added Max. unit number = 16	$T_{tx}=0.096$ Each $P_{cm}=23+(4+8)\times 4=71$ bytes	$T_{\max.}=Ts+T_{lt}+T_{so}$ $7.82\times 16+4.32+1$

6.4 Response Time of PLC Link

	Condition	Calculation process	One transmission cycle time (T)
	Relays / registers are evenly allocated, and Each PLC scan time = 1 ms	$T_{pc}=T_{tx} \times P_{cm}=0.096 \times 71 \approx 6.82 \text{ ms}$ Each $T_s=1+6.82=7.82 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 16)=4.32 \text{ ms}$	$=130.44 \text{ ms}$
2	16-unit link with all units added Max. unit number = 16 Relays / registers are evenly allocated Each PLC scan time = 5 ms	$T_{tx}=0.096$ Each $P_{cm}=23+(4+8) \times 4=71 \text{ bytes}$ $T_{pc}=T_{tx} \times P_{cm}=0.096 \times 71 \approx 6.82 \text{ ms}$ Each $T_s=5+6.82=11.82 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 16)=4.32 \text{ ms}$	$T_{\max.}=T_s+T_{lt}+T_{so}$ $11.82 \times 16+4.32+5$ $=198.44 \text{ ms}$
3	16-unit link with one unit unadded, Max. unit number = 16 Relays / registers are evenly allocated Each PLC scan time = 5 ms	$T_{tx}=0.096$ Each $T_s=5+6.82=11.82 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 15) \approx 4.13 \text{ ms}$ $T_{lk}=0.96+400+0.67+5 \approx 407 \text{ ms}$ Note: addition waiting time default value = 400 ms	$T_{\max.}=T_s+T_{lt}+T_{so}+T_{lk}$ $11.82 \times 15+4.13+5+407$ $=593.43 \text{ ms}$
4	8-unit link with all units added Max. unit number = 8 Relays / registers are evenly allocated Each PLC scan time = 5 ms	$T_{tx}=0.096$ Each $P_{cm}=23+(8+16) \times 4=119 \text{ bytes}$ $T_{pc}=T_{tx} \times P_{cm}=0.096 \times 119 \approx 11.43 \text{ ms}$ Each $T_s=5+11.43=16.43 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 8) \approx 2.79 \text{ ms}$	$T_{\max.}=T_s+T_{lt}+T_{so}$ $16.438+2.79+5$ $=139.23 \text{ ms}$
5	2-unit link with all units added Max. unit number = 2 Relays / registers are evenly allocated Each PLC scan time = 5 ms	$T_{tx}=0.096$ Each $P_{cm}=23+(32+64) \times 4=407 \text{ bytes}$ $T_{pc}=T_{tx} \times P_{cm}=0.096 \times 407 \approx 39.072 \text{ ms}$ Each $T_s=5+39.072=44.072 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 2) \approx 1.632 \text{ ms}$	$T_{\max.}=T_s+T_{lt}+T_{so}$ $44.072 \times 2+1.632+5$ $=94.776 \text{ ms}$
6	2-unit link with all units added Max. unit number = 2 Relay 32 points / register 2W are evenly allocated Each PLC scan time = 1 ms	$T_{tx}=0.096$ Each $P_{cm}=23+(1+1) \times 4=31 \text{ bytes}$ $T_{pc}=T_{tx} \times P_{cm}=0.096 \times 31 \approx 2.976 \text{ ms}$ Each $T_s=1+2.976=3.976 \text{ ms}$ $T_{lt}=0.096 \times (13+2 \times 2) \approx 1.632 \text{ ms}$	$T_{\max.}=T_s+T_{lt}+T_{so}$ $3.976 \times 2+1.632+1$ $=10.584 \text{ ms}$

6.4.2 Response Time when There are Units that have not been Added to the Link

- If there is an unadded unit, T_{lk} (link addition processing time) becomes longer, and makes transmission cycle time longer.

$$T_{\max.}=T_{s1}+T_{s2}+\dots+T_{sn}+T_{lt}+T_{so}+T_{lk}$$

$$T_{lk} = T_{lc} (\text{link addition command sending time}) + T_{wt} (\text{addition waiting time}) + T_{ls} (\text{sending time for command to stop transmission if link error occurs}) + T_{so} (\text{master unit scan time})$$

- “Unadded unit” refers to a unit that is not connected between unit No. 1 and the largest unit number, or to a unit that is connected but has not powered ON.

7 MEWTOCOL Master-Slave Communication

7.1 Configuration.....	7-2
7.1.1 Setting Communication Conditions.....	7-2
7.2 List of MEWTOCOL / MEWTOCOL7 Supporting Commands	7-3
7.2.1 List of MEWTOCOL-COM Commands	7-3
7.2.2 List of MEWTOCOL7 Commands	7-3
7.3 MEWTOCOL-COM Master Communication (RECV).....	7-5
7.3.1 Read Data from an External Device	7-5
7.3.2 RECV (MEWTOCOL Master / MODBUS Master).....	7-7
7.4 MEWTOCOL-COM Master Communication (SEND).....	7-15
7.4.1 Write Data into an External Device	7-15
7.4.2 SEND (MEWTOCOL Master / MODBUS Master).....	7-17

7.1 Configuration

7.1 Configuration

7.1.1 Setting Communication Conditions

■ Configuration

Setting items	Default	Specification range	Remark
Communication mode	MEWTOCOL-COM MEWTOCOL7-COM		Master communication is not possible using "MEWTOCOL7".
Station no.	1	MEWTOCOL-COM: 1 to 99, EEE MEWTOCOL7-COM: 1 to 999, EEE	Set a specific station no. for PLC to be connected to the PLC link. Set a value that does not overlap with other devices.
Baud rate	9600 bps	300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200 / 230400	Set the baud rate to match that of devices to be connected.
Data length	8 bit	7 bit / 8 bit	The setting must be done according to the devices connected.
Parity	Odd	None / Odd / Even	In general, the default values (8-bit length, odd parity, and 1-stop bit) should be used.
Stop bit	1 bit	1 bit	
RS/CS	Invalid	Invalid / Valid	
Send waiting time (set value × 0.01 ms)	0	0 to 10000 (0 to 100 ms)	The setting is used when it is necessary to delay data transmission to the partner device in both master and slave communication modes. For master communication, it is recommended to set this value to 0.
Start code STX	Invalid	-	
Terminator setting	CR	-	
Terminator judgment time (set value × 0.01 ms)	0	-	No need to specify.
Modem initialization	Do not initialize	Do not initialize / Initialize while performing settings / Re-initialize while performing settings	Perform settings only when a modem is to be connected. Perform settings for start-up modem initialization.

(Note 1) In MEWTOCOL communication, the following setting items need not be specified.

Start code, terminator setting, terminator judgment time, PLC link setting

7.2 List of MEWTOCOL / MEWTOCOL7 Supporting Commands

7.2.1 List of MEWTOCOL-COM Commands

■ Commands to be used

Type of instruction	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads contact ON/OFF status. <ul style="list-style-type: none"> Specifies only a single contact. Specifies multiple contacts. Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contact ON or OFF. <ul style="list-style-type: none"> Specifies only a single contact. Specifies multiple contacts. Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Register / reset contacts monitored	MC	Registers the contact to be monitored.
Register / reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using MD and MC.
Preset contact area (fill command)	SC	Fills the area of a specified range with a 16-point ON / OFF pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read the status of PLC	RT	Reads PLC specification, an error code when an error occurs, etc.
Abort	AB	The reception of multi-frame response is aborted.

(Note 1) Some devices cannot be accessed due to format limitations of MEWTOCOL-COM communication commands.

Info.

- For more details of MEWTOCOL command, refer to "11.2 MEWTOCOL-COM Format".

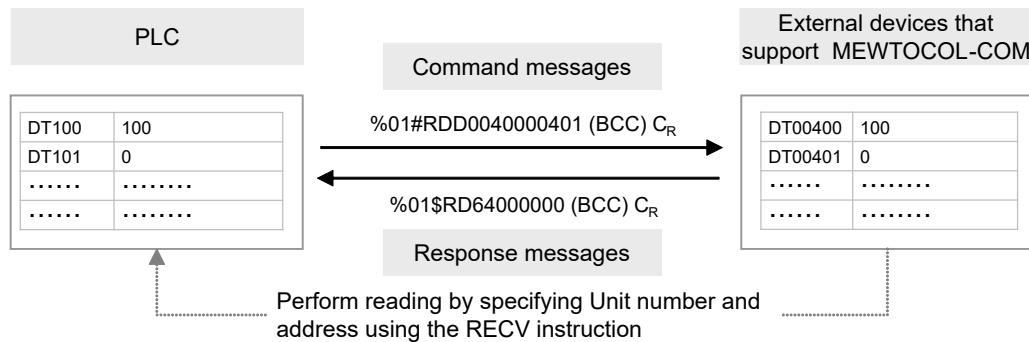
7.2.2 List of MEWTOCOL7 Commands

■ Commands to be used

Type of instruction	Code	Description
Read data area	MMRD	Reads the contents of a data area.
Write data area	MMWT	Writes data to a data area.

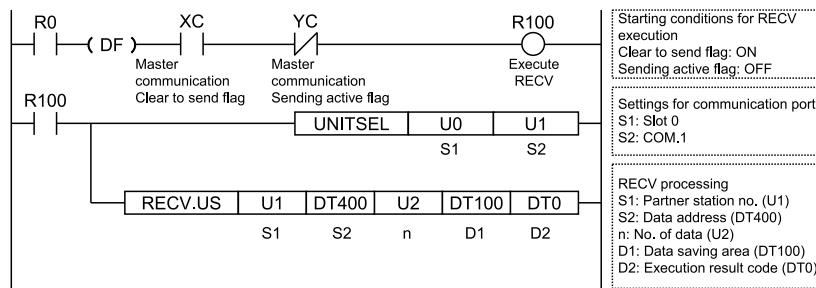
7.2 List of MEWTOCOL / MEWTOCOL7 Supporting Commands

Info.


- For details of MEWTOCOL commands, please see "[11.3 MEWTOCOL7-COM Format](#)".

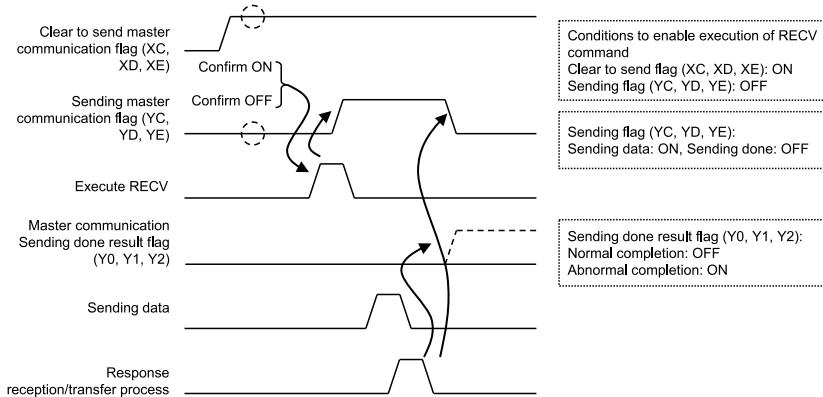
7.3 MEWTOCOL-COM Master Communication (RECV)

7.3.1 Read Data from an External Device


■ Instructions

In master communication, PLC has the sending right, and executes communication by sending commands to devices that support MEWTOCOL, and receiving responses. Messages in accordance with the protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.

■ Sample program


- Send commands from the COM.1 port of the CPU unit, read data from the data area of an external device (station no. 1) DT400 to DT401, and write the content into PLC's data register DT100 to DT101.
- Confirm that the unit is in the master mode (XC), and that the sending process is not in progress for the same port (YC), and start up the SEND instruction.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the RECV instruction, specify and execute the partner station no. (U1), initial address (DT400), No. of data (U2), and initial address on the PLC side to save data (DT100).

(Note 1) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

7.3 MEWTOCOL-COM Master Communication (RECV)

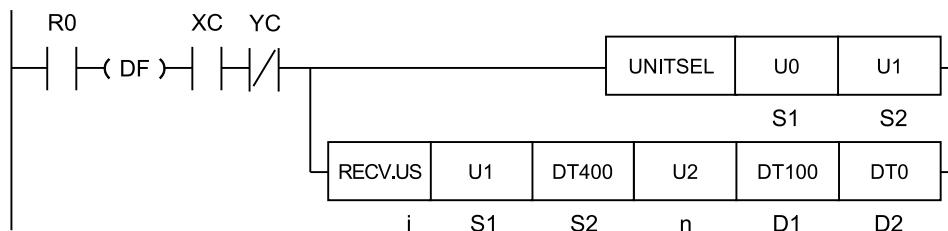
■ Timing chart

■ I/O allocation (CPU Unit)

COM. port no.			Name	Description
1	2	0		
XC	XD	XE	Master communication Clear to send flag	Turns ON when MEWTOCOL-COM is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

■ I/O allocation (For Serial Communication Unit)

COM. port no.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication Clear to send flag	Turns ON when MEWTOCOL-COM is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	YF	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation status. Do not write over it with a user program.

1 Info.

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL is selected. Confirm that the "Master communication Clear to send flag" (XC - XF) for the targeted channel is ON, and execute SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "Master communication Sending active flag" (YC - YF) is OFF, and execute instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If no response is received, the "Master communication Sending active flag" (YC - YF) remains ON throughout the timeout setting time specified in CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM. ports.

7.3.2 RECV (MEWTOCOL Master / MODBUS Master)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operatio n unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Operand	Description
S1	Partner station number
S2	Starting address of the device in the sender data area of the partner unit
n	Number of received data
D1	Starting address of the device in the receiver data area of the master unit
D2	Starting address of the device area of the master unit that stores the execution result code (1 word)

7.3 MEWTOCOL-COM Master Communication (RECV)

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	“ ”	
S1	●	●	●	●				●	●								●	●			
S2 ^(Note 1)	●	●	●	●				●	●												
n	●	●	●	●				●	●								●	●			
D1	●	●	●	●				●	●												
D2	●	●	●	●				●	●												

(Note 1) When the source unit is FP7, only global devices can be specified. (Local devices cannot be specified.)

■ Available bit devices (●: Available)

Operand	Bit device												Specification of bit of word device			Index modifier
	X	Y	R	L	T	C	P	E	SR	IN	OT	DT.n	LD.n			
S1																
S2 ^(Note 1)	●	●	●	(Not e 2)									(Note 3)	(Note 3)		●
n																
D1	●	●	●	●								●		●		●
D2																

(Note 1) When the sender is FP7, only global devices can be specified. (A local device cannot be specified.)

(Note 2) In the case of MODBUS mode, a bit device cannot be specified.

(Note 3) In the case of MEWTOCOL-COM mode or MODBUS mode, a bit device cannot be specified.

■ Outline of operation

- Commands are sent from the communication port of the unit to perform the data transmission with external devices.
- Data can be read and written by specifying station numbers and memory addresses and executing the SEND and RECV instructions in a user program, because PLC automatically creates messages according to the protocol.
- Select **acommunication mode** in the **configuration** menu of the tool software FPWIN GR7.
- When the RECV instruction is executed, the data is read from the address that starts with [S2] in the partner station number [S1] and the data is stored in the area that starts with [D1] in the master unit.
- Depending on the type of device specified by [S2] and [D1], the transfer method (register transfer / bit transfer) varies.
- The amount of received data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.

- The execution result code is stored in the one-word area of the master unit that is specified by [D2].

■ Specification of partner unit station number [S1]

Communication Mode	When SCU is used	When ET-LAN is used
MEWTOCOL-COM	1 to 99, 238 (decimal) = EE (hexadecimal)	1 to 64, 238 (decimal) = EE (hexadecimal)
MEWTOCOL-DAT ^(Note 1)	Non-SCU-compliant	^(Note 1)
MODBUS	1 to 255	1 to 255

(Note 1) For connection between FP7 and FP7, specify "1". Destination is determined by the IP address.

■ Specify the starting address [S2] of the sender data area

Transfer method	Communication Mode	Address range
Register transfer	MEWTOCOL-COM	0 to 99999
	MEWTOCOL-DAT	0 to 65535F
	MODBUS	0 to 65535 (H FFFF)
Bit transfer	MEWTOCOL-COM	0 to 999F
	MEWTOCOL-DAT	0 to 65535 (H FFFF)
	MODBUS	0 to 65535 (H FFFF)

(Note 1) When the receiver is the file register FL, specify a constant. Example) For FL100, specify U100. For the file register, only bank 0 can be specified.

■ Specification of the amount of received data [n]

Transfer method	Communication Mode	Types of communication port	Setting range
Register transfer ^(Note 1)	MEWTOCOL-COM	1 to 509 words	RCC command and RD command are used.
	MEWTOCOL-DAT	1 to 1020 words	Connection setting: Setting of the MEWTOCOL Communication type setting: Connect with FP2 ET-LAN
		1 to 2038 words	Connection setting: Setting of the MEWTOCOL Communication type setting: Do not connect with FP2 ET-LAN
Bit transfer ^(Note 2)	MODBUS	1 to 127 words	Command 1 is used for reading WY and WR. Command 2 is used for WX. Command 3 is used for reading DT Command 4 is used for reading WL and LD
	MEWTOCOL-COM	Fixed to 1 bit	During MEWTOCOL-COM, RCS command is used.
	MEWTOCOL-DAT	Fixed to 1 bit	During MEWTOCOL-DAT, read contact information 53H is used.
	MODBUS	1 to 2040 bits	Command 1 is used for reading Y and R. Command 2 is used for X.

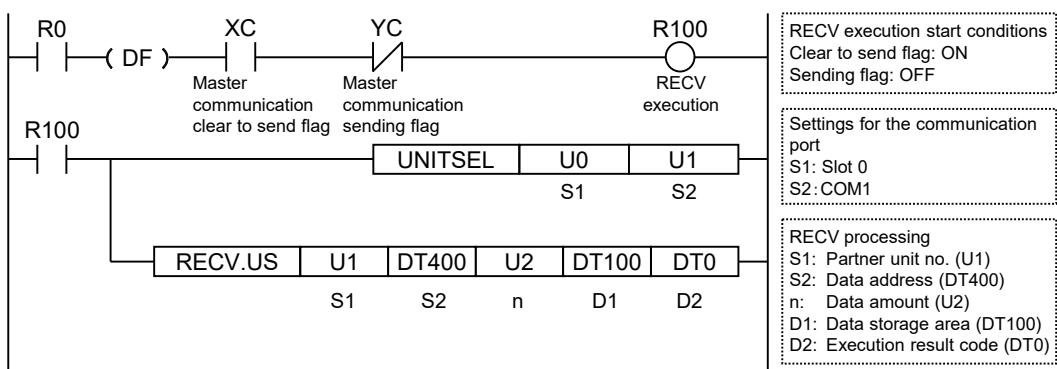
(Note 1) When 16-bit devices are specified for sender [S] and receiver [D2]

(Note 2) When bit devices are specified for sender [S] and receiver [D2]

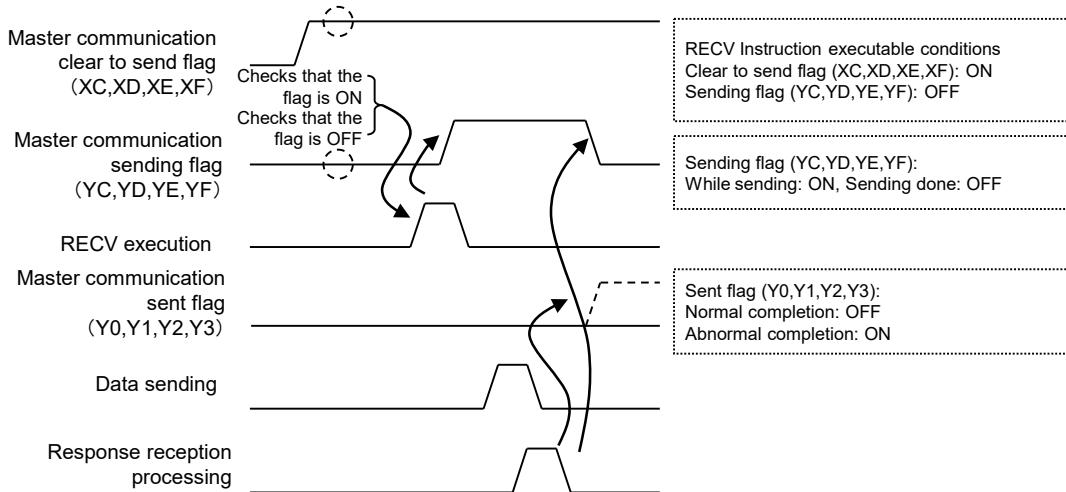
7.3 MEWTOCOL-COM Master Communication (RECV)

■ Execution result code [D2]

Code	Description	Code	Description
H0	Normal end	H7	I/O allocation shortage error (Note 2)
H1	The communication port is being used in the master communication.	H8	The send buffer is being used. (Note 3)
H2	The communication port is being used in the slave communication.	H41	Format error
H3	The number of master communication instructions simultaneously used is exceeded.	H60	Parameter error
H4	Transmission timeout	H61	Data error
H5	Response reception timeout	H91	Missing expansion slave unit error
H6	Reception error (Note 1)		


(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.


(Note 3) Effective when the version is 4.57 or later.

■ Sample program (in the case of SCU)

- This program sends the command from the COM1 port of the CPU unit, reads the data from the data areas DT400 to DT401 of the external device (station number 1), and writes the data into the data registers DT100 to DT101 of the PLC.
- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the RECV instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the RECV instruction, specify and execute the partner station number (U1), starting address (DT400), data amount (U2), and PLC's starting address to store the data (DT100).

■ Time chart (in the case of SCU)

■ Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. The communication cassette (Ethernet type) does not support MODBUS.

■ I/O allocation (in the case of CPU with built-in SCU)

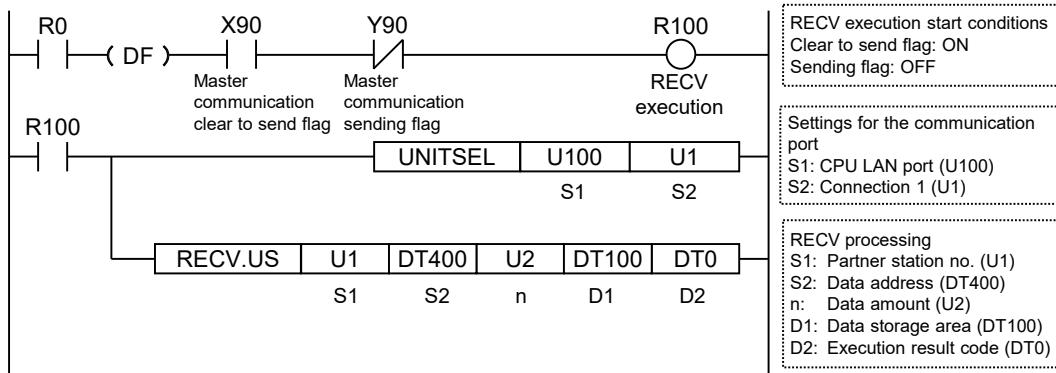
COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

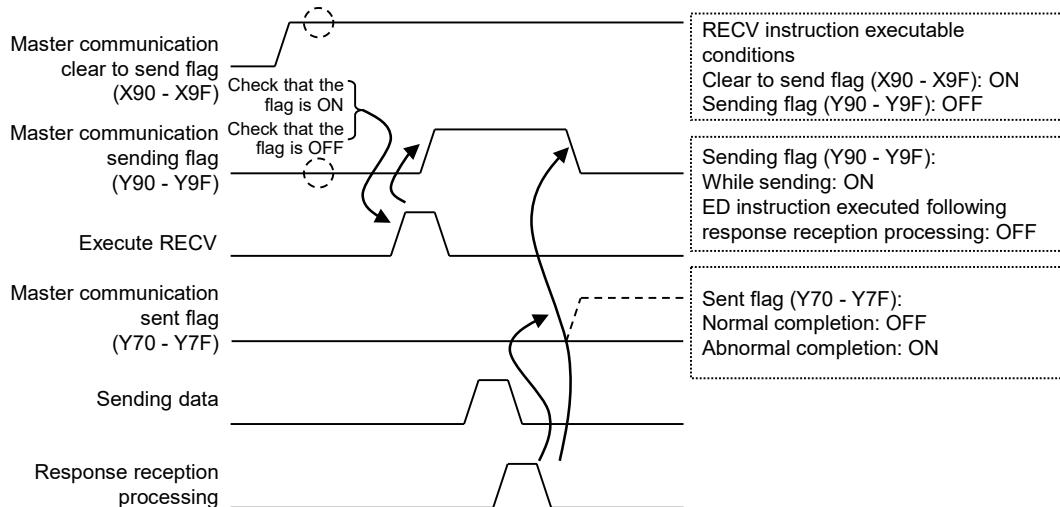
7.3 MEWTOCOL-COM Master Communication (RECV)

■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of SCU)


- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM ports.

■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends the command from the LAN port of the CPU unit, reads the data from the data areas DT400 to DT401 of the external device, and writes the data into the data registers DT100 to DT101 of the PLC.
- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the RECV instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the RECV instruction, specify and execute the partner station number (U1), starting address (DT400), data amount (U2), and PLC's starting address to store the data (DT100).

■ Time chart (in the case of CPU with built-in ET-LAN)

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.

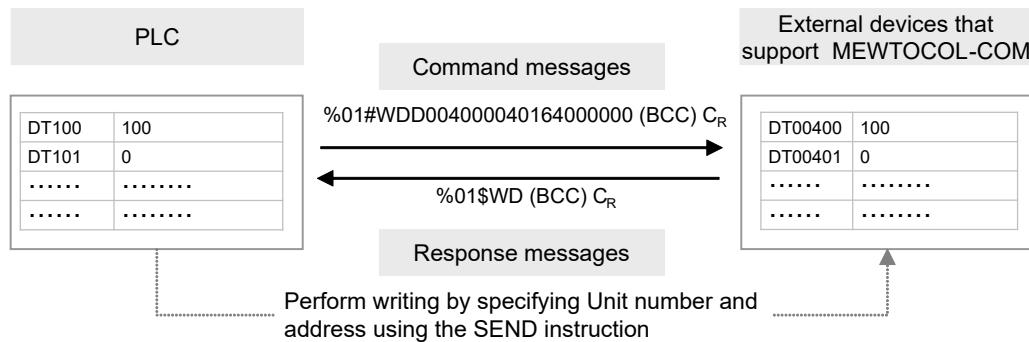
7.3 MEWTOCOL-COM Master Communication (RECV)

- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- For communication between LAN ports of FP7, specify "U1" for the partner station number. The receiver is determined by the IP address.

Info.

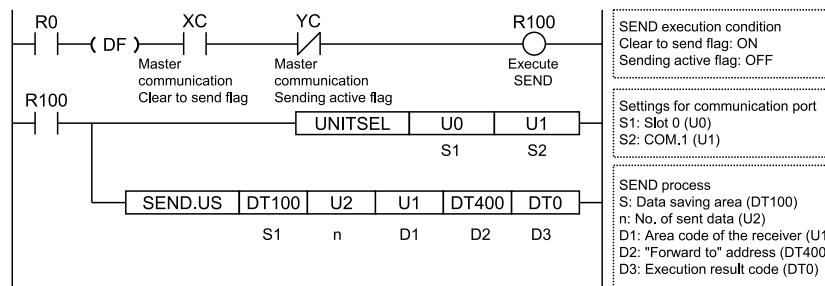
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. Refer to the section describing the case of SCU.

■ Flag operations


Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the destination range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Partner station number specified by [S1] is out of the range.
	Partner unit sender data device specified by [S2] is invalid.
	Sent data amount specified by [n] is invalid.
	Data device of the receiver data area in the master unit specified by [D1] is invalid, or exceeds the area.
	Result storage device specified by [D2] is invalid.
	Specified bit devices for [S2] and [D1], and/or specified 16-bit device, differ.
	Integer specification for [S2] is only available for the MODBUS address direct specification type. It is invalid for other types.

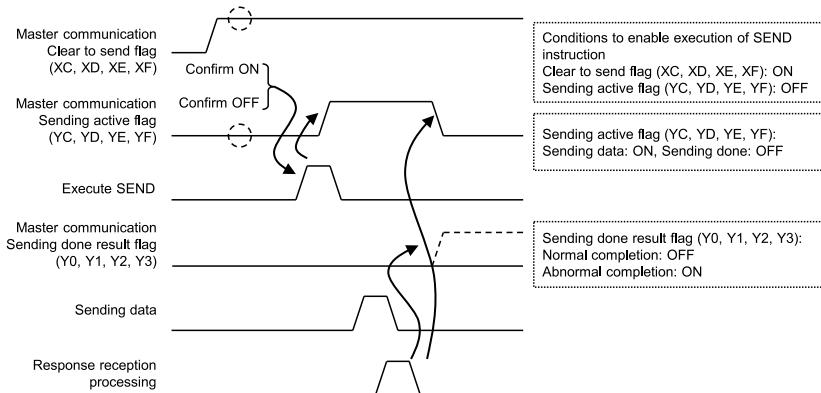
7.4 MEWTOCOL-COM Master Communication (SEND)

7.4.1 Write Data into an External Device


■ Instructions

In master communication, PLC has the sending right, and executes communication by sending commands to devices that support MEWTOCOL, and receiving responses. Messages in accordance with the protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.

■ Sample program


- Send commands from the COM.1 port of the CPU unit, and write the content of PLC's data register DT100 to DT101 into the data area of an external device (station no. 1) DT400 to DT401.
- Confirm that the unit is in the master mode (XC), and that the sending process is not in progress for the same port (YC), and start up the SEND instruction.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the SEND instruction, specify and execute the sender initial address (DT100), No. of data (U2), "Transmit to" station no. (U1), and initial address (DT400).

(Note 1) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

7.4 MEWTOCOL-COM Master Communication (SEND)

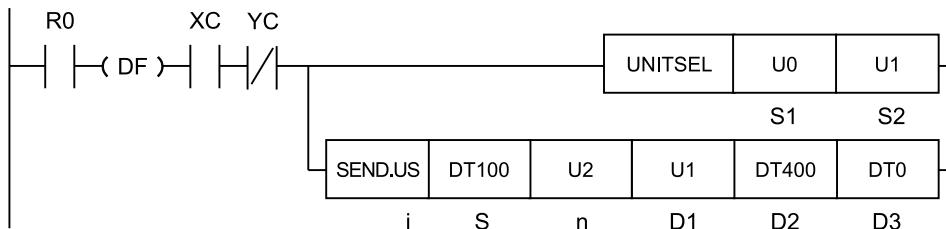
■ Timing chart

■ I/O allocation (CPU Unit)

COM. port no.			Name	Description
1	2	0		
XC	XD	XE	Master communication Clear to send flag	Turns ON when MEWTOCOL-COM is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion:0, Abnormal completion: 1)

■ I/O allocation (For Serial Communication Unit)

COM. port no.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication Clear to send flag	Turns ON when MEWTOCOL-COM is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	YF	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation status. Do not write over it with a user program.

1 Info.

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL is selected. Confirm that the "Master communication Clear to send flag" (XC - XF) for the targeted channel is ON, and execute SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "Master communication Sending active flag" (YC - YF) is OFF, and execute instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If no response is received, the "Master communication Sending active flag" (YC - YF) remains ON throughout the timeout setting time specified in CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM. ports.

7.4.2 SEND (MEWTOCOL Master / MODBUS Master)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operatio n unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Operand	Description
S	Starting address of the sender data area
n	Amount of sent data
D1	Partner station number
D2	Starting address of the device in the receiver data area of the partner unit
D3	Starting address of the device area of the master unit that stores the execution result code (1 word)

7.4 MEWTOCOL-COM Master Communication (SEND)

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	“ ”	
S	●	●	●	●				●	●											●	
n	●	●	●	●				●	●							●	●			●	
D1	●	●	●	●				●	●							●	●			●	
D2 ^(Note 1)	(N ote 2)	●	●	(N ote 2)				●	(N ote 2)											●	
D3	●	●	●	●				●	●											●	

(Note 1) When the destination unit is FP7, only global devices can be specified. (Local devices cannot be specified.)

(Note 2) In the MODBUS mode, this cannot be specified as the receiver.

■ Available bit devices (●: Available)

Operand	Bit device												Specification of bit of word device				Index modifier
	X	Y	R	L	T	C	P	E	SR	IN	OT	DT.n	LD.n				
S	●	●	●	●									●		●		●
n																	
D1																	
D2 ^(Note 1)	(Not e 2)	●	●	(Not e 2)													●
D3																	

(Note 1) When the receiver is FP7, only global devices can be specified. (A local device cannot be specified.)

(Note 2) In the case of MODBUS and MEWTOCOL-COM, a bit device cannot be specified.

■ Outline of operation

- Commands are sent from the communication port of the unit to perform the data transmission with external devices. Message in accordance with the protocol is automatically formulated by PLC. The user program only has to specify the station number and the memory address, and execute the SEND/RECV instruction, to carry out reading and writing.
- Select **acommunication mode** in the configuration menu of the tool software FPWIN GR7.
- When the SEND instruction is executed, data are read from the device in the master unit, starting with [S], and stored in the address starting with [D2] of the partner unit.
- The transfer method (register transfer/bit transfer) varies according to the device types that are specified by [S] and [D2].
- The amount of sent data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.

- The execution result code is stored in the one-word area of the master unit that is specified by [D3].

■ Setting the amount of sent data [n]

Transfer method	Communication Mode	Amount of sent data n	Note
Register transfer	MEWTOCOL-COM	1 to 507 words	
	MEWTOCOL-DAT	1 to 1020 words	Connection setting: MEWTOCOL Communication type setting: Connect with FP2 ET-LAN
		1 to 2038 words	Connection setting: MEWTOCOL Communication type setting: Do not connect with FP2 ET-LAN
Bit transfer	MODBUS	1 to 127 words	Use MODBUS command 15 (to write to WY or WR) and command 16 (to write multiple words to DT).
	MEWTOCOL-COM	Fixed at 1 bit	During MEWTOCOL-COM, WCS command is used.
	MEWTOCOL-DAT	Fixed at 1 bit	During MEWTOCOL-DAT, contact information write 52H is used.
MODBUS		1 to 2040	Use the force multiple coils command 15.

(Note 1) The transfer method varies according to the device type specified for operands [S] and [D2]. The register transfer is used for 16-bit devices and the bit transfer is used for 1-bit devices.

(Note 2) The amount of sent data is specified in words for the register transfer and in bits for the bit transfer.

■ Specification of partner unit station number [D1]

Communication Mode	When SCU is used	When ET-LAN is used
MEWTOCOL-COM	1 to 99, 238 (decimal) = EE (hexadecimal)	1 to 64, 238 (decimal) = EE (hexadecimal)
MEWTOCOL-DAT	Non-SCU-compliant	
MODBUS	0 to 255	0 to 255

(Note 1) In the case of SCU, when "0" is specified for the partner station number, global transfer is selected. In this case, there is no response message from the destination.

(Note 2) For connection between FP7 and FP7, specify "1". Destination is determined by the IP address.

■ Specification of destination address [D2]

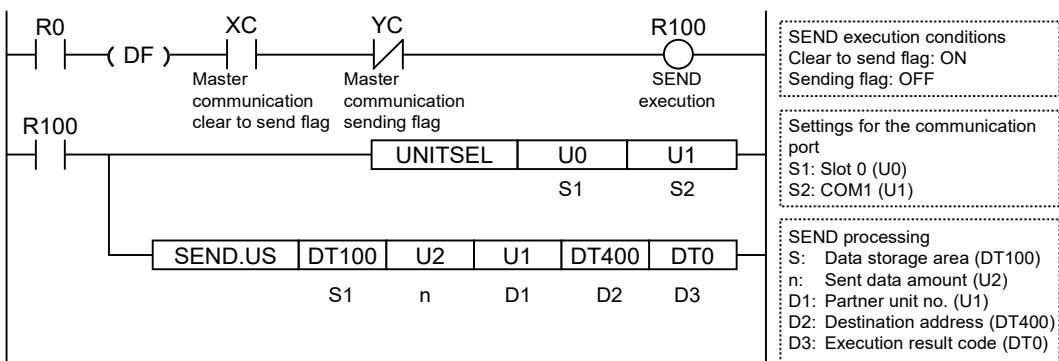
Transfer method	Communication Mode	Address range
Register transfer	MEWTOCOL-COM	0 to 99999
	MEWTOCOL-DAT	0 to 65535F
	MODBUS	0 to 65535 (H FFFF)
Bit transfer	MEWTOCOL-COM	0 to 999F
	MEWTOCOL-DAT	0 to 65535 (H FFFF)
	MODBUS	0 to 65535 (H FFFF)

(Note 1) When the receiver is the file register FL, specify a constant. Example) For FL100, specify U100. For the file register, only bank 0 can be specified.

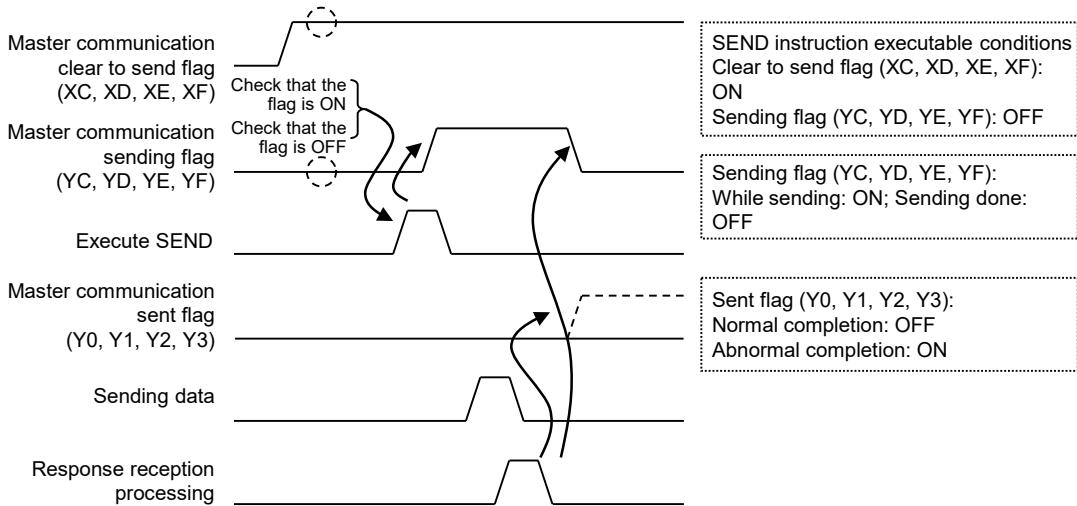
7.4 MEWTOCOL-COM Master Communication (SEND)

■ Execution result code [D3]

Code	Description	Code	Description
H0	Normal end	H7	I/O allocation shortage error (Note 2)
H1	The communication port is being used in the master communication.	H8	The send buffer is being used. (Note 3)
H2	The communication port is being used in the slave communication.	H41	Format error
H3	The number of master communication instructions simultaneously used is exceeded.	H60	Parameter error
H4	Transmission timeout	H61	Data error
H5	Response reception timeout	H91	Missing expansion slave unit error
H6	Reception error (Note 1)		


(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.


(Note 3) Effective when the version is 4.57 or later.

■ Sample program (in the case of SCU)

- This program sends the command from the COM1 port of the CPU unit to write the content of PLC's data registers DT100 to DT101 into the data areas DT400 to DT401 of the external device (station number 1).
- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the SEND instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the SEND instruction, specify and execute the source's starting address (DT100) and data amount (U2), the destination's station number (U1) and starting address (DT400).

■ Time chart (in the case of SCU)

1 Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. The communication cassette (Ethernet type) does not support MODBUS.

■ I/O allocation (in the case of CPU with built-in SCU)

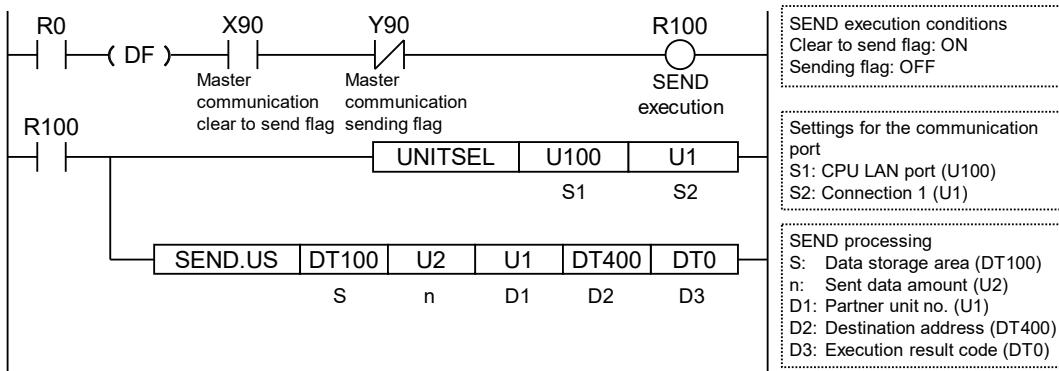
COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

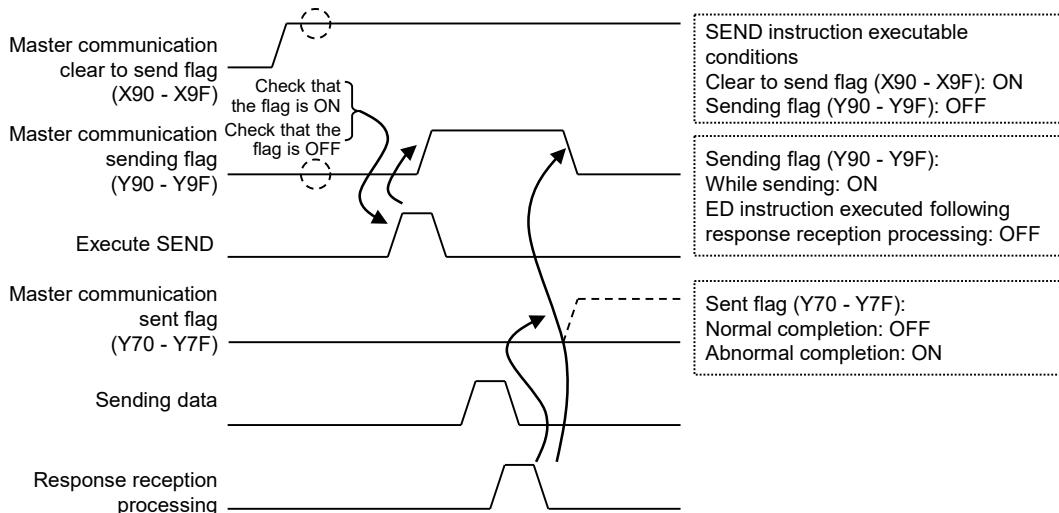
7.4 MEWTOCOL-COM Master Communication (SEND)

■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of SCU)


- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM ports.

■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends the command from the LAN port of the CPU unit to write the content of PLC's data registers DT100 to DT101 into the data areas DT400 to DT401 of the external device.
- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the SEND instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the SEND instruction, specify and execute the source's starting address (DT100) and data amount (U2), the destination's station number (U1) and starting address (DT400).

■ Time chart (in the case of CPU with built-in ET-LAN)

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.

7.4 MEWTOCOL-COM Master Communication (SEND)

- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- For communication between LAN ports of FP7, specify "U1" for the partner station number. The receiver is determined by the IP address.

Info.

- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. Refer to the section describing the case of SCU.

■ Flag operations

Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the source range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Data device specified by [S] is invalid, or exceeds the area.
	Sent data amount specified by [n] is invalid.
	Station number specified by [D1] is out of the range.
	Data device specified by [D2] is invalid, or exceeds the area.
	Result storage device specified by [D3] is invalid.
	Integer specification for [D2] is only available for the MODBUS direct address specification type. It is invalid for other types.
	Specified bit devices for [S] and [D2], and/or specified 16-bit device, differ.

8 MODBUS RTU Master-Slave Communication

8.1 Configuration.....	8-2
8.1.1 Setting Communication Conditions.....	8-2
8.2 List of MODBUS RTU Supported Commands	8-3
8.2.1 List of MODBUS Function Codes	8-3
8.3 MODBUS RTU Master Communication (RECV)	8-4
8.3.1 Read Data from an External Device	8-4
8.3.2 RECV (MEWTOCOL Master / MODBUS Master).....	8-6
8.3.3 RECV (MODBUS Master: Function Code Specification)	8-14
8.4 MODBUS RTU Master Communication (SEND)	8-21
8.4.1 Write Data into an External Device	8-21
8.4.2 SEND (MEWTOCOL Master / MODBUS Master).....	8-23
8.4.3 SEND (MODBUS Master: Function Code Specification)	8-31

8.1 Configuration

8.1 Configuration

8.1.1 Setting Communication Conditions

■ Configuration

Setting items	Default	Specification range	Remark
Communication mode	MEWTOCOL-COM	MODBUS RTU	Specify "MODBUS RTU".
Station no.	1	1 to 247	Set a specific station no. for PLC to be connected to the PLC link. Set a value that does not overlap with other devices.
Baud rate	9600	300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200	The setting must be done according to the devices connected.
Data length	8 bit	8 bit	
Parity	Odd	None / Odd / Even	
Stop bit	1 bit	1 bit	
RS/CS	Invalid	Invalid / Valid	
Send waiting time (set value × 0.01 ms)	0	0 to 10000 (0 to 100 ms)	The setting is used when it is necessary to delay data transmission to the partner device in both master and slave communication modes. For master communication, it is recommended to set this value to 0.
Start code STX	Invalid	-	
Terminator setting	CR	-	
Terminator judgment time (set value × 0.01 ms)	0	-	Use the unit in the default setting as indicated on the left.
Modem initialization	Do not initialize	-	

(Note 1) In MODBUS communication, the following setting items need not be specified.

Start code, terminator setting, terminator judgment time, modem initialization, PLC link setting

8.2 List of MODBUS RTU Supported Commands

8.2.1 List of MODBUS Function Codes

■ Table of supported commands

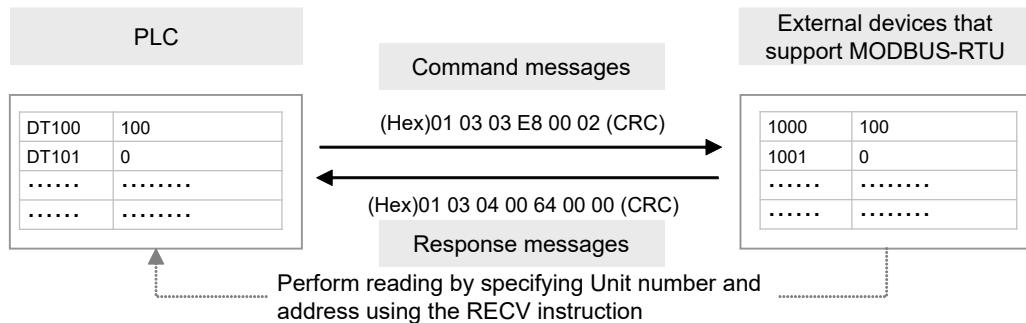
Code	Name (MODBUS)	Name	Remarks (Reference No.)	FP7 supported functions
01	Read Coil Status	Read Y and R Coils	0X	•
02	Read Input Status	Read X Contact	1X	•
03	Read Holding Registers	Read DT	4X	•
04	Read Input Registers	Read WL and LD	3X	•
05	Force Single Coil	Write Single Y and R	0X	•
06	Preset Single Register	Write DT 1 Word	4X	•
08	Diagnostics	Loopback Test	-	-
15	Force Multiple Coils	Write Multiple Y's and R's	0X	•
16	Preset Multiple Registers	Write DT Multiple Words	4X	•
22	Mask Write 4X Register	Write DT Mask	4X	-
23	Read/Write 4X Registers	Read/Write DT	4X	-

(Note 1) Types of MODBUS function codes vary by instructions to be used.

■ Correspondence table for MODBUS reference No. and device No.

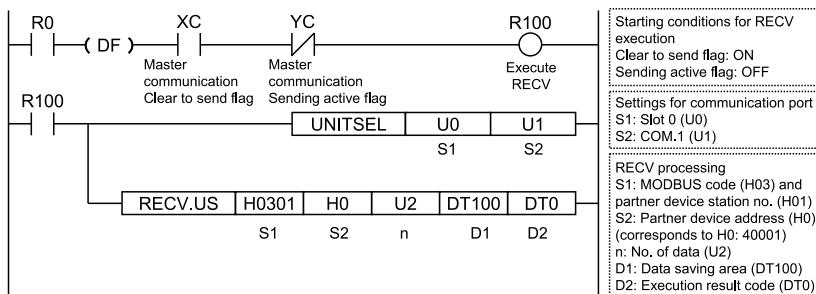
MODBUS reference No.		Data on BUS (hexadecimal)	PLC device number
Coil	000001 to 002048	0000 to 07FF	Y0 to Y127F
	002049 to 034816	0800 to 87FF	R0 to R2047F
Input	100001 to 108192	0000 to 1FFF	X0 to X511F
Holding register	400001 to 465536	0000 to FFFF	DT0 to DT65535
Input register	300001 to 301024	0000 to 03FF	WL0 to WL1023
	302001 to 318384	07D0 to 47CF	LD0 to LD16383

(Note 1) The table above indicates correspondence between the MODBUS reference numbers for accessing from a higher device to FP7 using the MODBUS protocol, and the operation device numbers of FP7.


8.3 MODBUS RTU Master Communication (RECV)

8.3 MODBUS RTU Master Communication (RECV)

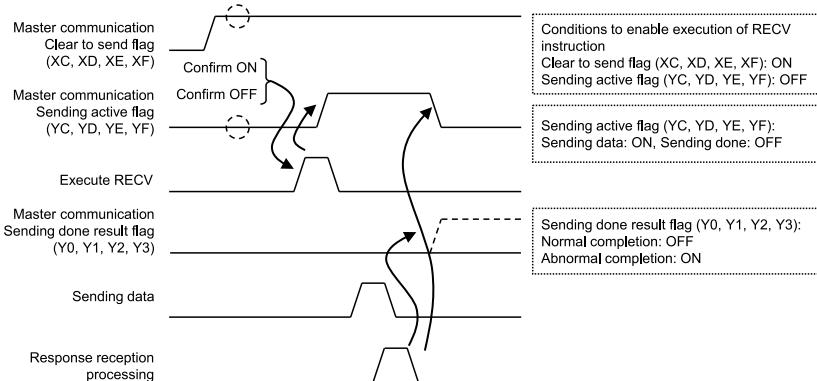
8.3.1 Read Data from an External Device


■ Instructions

In master communication, PLC has the sending right, and executes communication by sending commands to devices that support MODBUS RTU, and receiving responses. Messages in accordance with the protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.

■ Sample program

- Send commands from the COM.1 port of the CPU unit, read data from the data area of an external device (station no. 1) 40001 - 40002, and write the content into PLC's data register DT100 - DT101.
- Confirm that the unit is in the master mode (XC), and that the sending process is not in progress for the same port (YC), and start up the SEND instruction.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the RECV instruction, specify and execute the partner device station no. (U1), MODBUS command and partner device station no. to be used (H0301), initial address (40001), No. of data (U2), and initial address on the PLC side to save data (DT100). For the address of the partner device, please check operating instructions, etc. of the relevant device.



(Note 1) Operand [S1] of RECV instruction is specified by combining two hexadecimal digits of MODBUS function code with two hexadecimal digits of partner device station no.

(Note 2) When the partner device is FP series PLC, operand [S2] of RECV instruction can be specified using the device no.

(Note 3) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

■ Timing chart

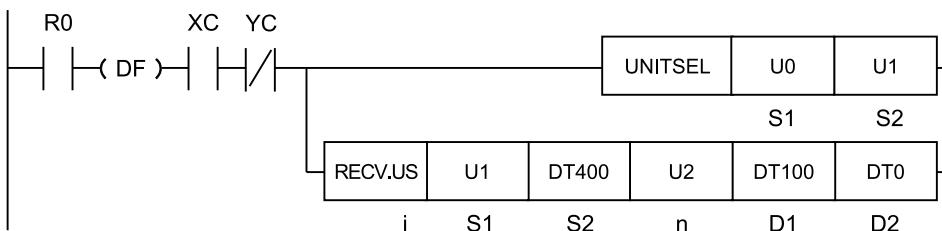
■ I/O allocation (CPU Unit)

COM. port no.			Name	Description
1	2	0		
XC	XD	XE	Master communication Clear to send flag	Turns ON when MODBUS RTU is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

■ I/O allocation (For Serial Communication Unit)

COM. port no.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MODBUS RTU is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	YF	Master communication sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation status. Do not write over it with a user program.


8.3 MODBUS RTU Master Communication (RECV)

Info.

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only valid when MODBUS is selected. Confirm that the "Master communication Clear to send flag" (XC - XF) for the targeted channel is ON, and execute SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "Master communication Sending active flag" (YC - YF) is OFF, and execute instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If no response is received, the "Master communication Sending active flag" (YC - YF) remains ON throughout the timeout setting time specified in CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM. ports.

8.3.2 RECV (MEWTOCOL Master / MODBUS Master)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operatio n unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Operand	Description
S1	Partner station number
S2	Starting address of the device in the sender data area of the partner unit
n	Number of received data
D1	Starting address of the device in the receiver data area of the master unit
D2	Starting address of the device area of the master unit that stores the execution result code (1 word)

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r		Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	WI	W O	TS C S	TE C E	IX	K	U	H	SF	D F	...	
S1	●	●	●	●				●	●							●	●				●
S2 ^(Note 1)	●	●	●	●				●	●												●
n	●	●	●	●				●	●							●	●				●
D1	●	●	●	●				●	●												●
D2	●	●	●	●				●	●												●

(Note 1) When the source unit is FP7, only global devices can be specified. (Local devices cannot be specified.)

■ Available bit devices (●: Available)

Operand	Bit device												Specification of bit of word device				Index modifier
	X	Y	R	L	T	C	P	E	SR	IN	OT	DT.n	LD.n				
S1																	
S2 ^(Note 1)	●	●	●		(Not e 2)								(Note 3)	(Note 3)			●
n																	
D1	●	●	●	●								●		●			●
D2																	

(Note 1) When the sender is FP7, only global devices can be specified. (A local device cannot be specified.)

(Note 2) In the case of MODBUS mode, a bit device cannot be specified.

(Note 3) In the case of MEWTOCOL-COM mode or MODBUS mode, a bit device cannot be specified.

■ Outline of operation

- Commands are sent from the communication port of the unit to perform the data transmission with external devices.
- Data can be read and written by specifying station numbers and memory addresses and executing the SEND and RECV instructions in a user program, because PLC automatically creates messages according to the protocol.
- Select a **communication mode** in the **configuration** menu of the tool software FPWIN GR7.
- When the RECV instruction is executed, the data is read from the address that starts with [S2] in the partner station number [S1] and the data is stored in the area that starts with [D1] in the master unit.
- Depending on the type of device specified by [S2] and [D1], the transfer method (register transfer / bit transfer) varies.
- The amount of received data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.

8.3 MODBUS RTU Master Communication (RECV)

- The execution result code is stored in the one-word area of the master unit that is specified by [D2].

■ Specification of partner unit station number [S1]

Communication Mode	When SCU is used	When ET-LAN is used
MEWTOCOL-COM	1 to 99, 238 (decimal) = EE (hexadecimal)	1 to 64, 238 (decimal) = EE (hexadecimal)
MEWTOCOL-DAT ^(Note 1)	Non-SCU-compliant	^(Note 1)
MODBUS	1 to 255	1 to 255

(Note 1) For connection between FP7 and FP7, specify "1". Destination is determined by the IP address.

■ Specify the starting address [S2] of the sender data area

Transfer method	Communication Mode	Address range
Register transfer	MEWTOCOL-COM	0 to 99999
	MEWTOCOL-DAT	0 to 65535F
	MODBUS	0 to 65535 (H FFFF)
Bit transfer	MEWTOCOL-COM	0 to 999F
	MEWTOCOL-DAT	0 to 65535 (H FFFF)
	MODBUS	0 to 65535 (H FFFF)

(Note 1) When the receiver is the file register FL, specify a constant. Example) For FL100, specify U100. For the file register, only bank 0 can be specified.

■ Specification of the amount of received data [n]

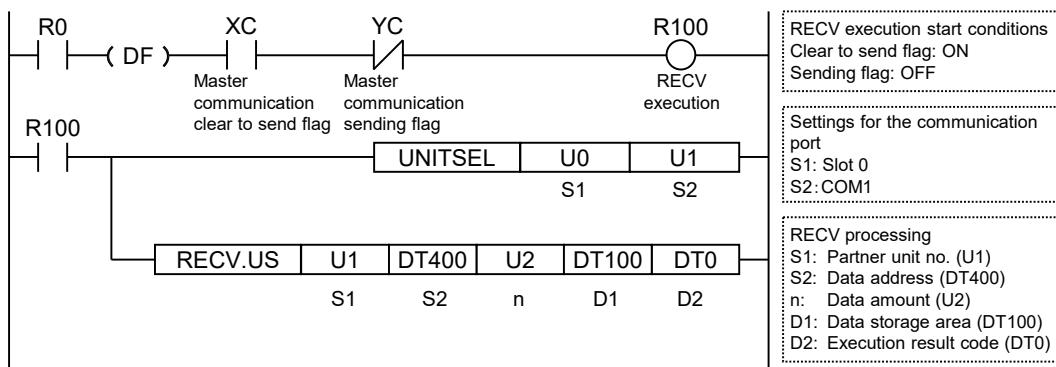
Transfer method	Communication Mode	Types of communication port	Setting range
Register transfer ^(Note 1)	MEWTOCOL-COM	1 to 509 words	RCC command and RD command are used.
	MEWTOCOL-DAT	1 to 1020 words	Connection setting: Setting of the MEWTOCOL Communication type setting: Connect with FP2 ET-LAN
		1 to 2038 words	Connection setting: Setting of the MEWTOCOL Communication type setting: Do not connect with FP2 ET-LAN
	MODBUS	1 to 127 words	Command 1 is used for reading WY and WR. Command 2 is used for WX. Command 3 is used for reading DT Command 4 is used for reading WL and LD
Bit transfer ^(Note 2)	MEWTOCOL-COM	Fixed to 1 bit	During MEWTOCOL-COM, RCS command is used.
	MEWTOCOL-DAT	Fixed to 1 bit	During MEWTOCOL-DAT, read contact information 53H is used.
	MODBUS	1 to 2040 bits	Command 1 is used for reading Y and R. Command 2 is used for X.

(Note 1) When 16-bit devices are specified for sender [S] and receiver [D2]

(Note 2) When bit devices are specified for sender [S] and receiver [D2]

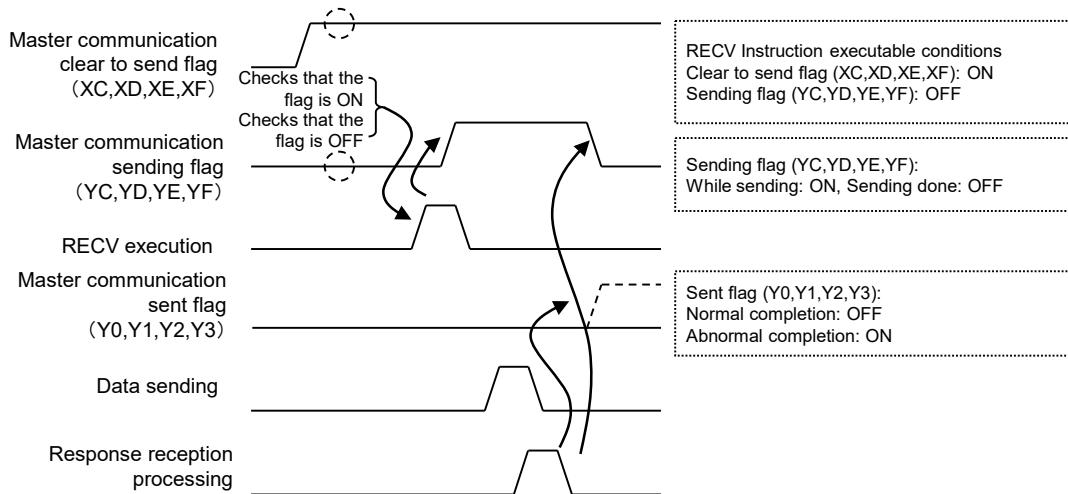
■ Execution result code [D2]

Code	Description	Code	Description
H0	Normal end	H7	I/O allocation shortage error ^(Note 2)
H1	The communication port is being used in the master communication.	H8	The send buffer is being used. ^(Note 3)
H2	The communication port is being used in the slave communication.	H41	Format error
H3	The number of master communication instructions simultaneously used is exceeded.	H60	Parameter error
H4	Transmission timeout	H61	Data error
H5	Response reception timeout	H91	Missing expansion slave unit error
H6	Reception error ^(Note 1)		


(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.

(Note 3) Effective when the version is 4.57 or later.


■ Sample program (in the case of SCU)

- This program sends the command from the COM1 port of the CPU unit, reads the data from the data areas DT400 to DT401 of the external device (station number 1), and writes the data into the data registers DT100 to DT101 of the PLC.
- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the RECV instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the RECV instruction, specify and execute the partner station number (U1), starting address (DT400), data amount (U2), and PLC's starting address to store the data (DT100).

8.3 MODBUS RTU Master Communication (RECV)

■ Time chart (in the case of SCU)

Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. The communication cassette (Ethernet type) does not support MODBUS.

■ I/O allocation (in the case of CPU with built-in SCU)

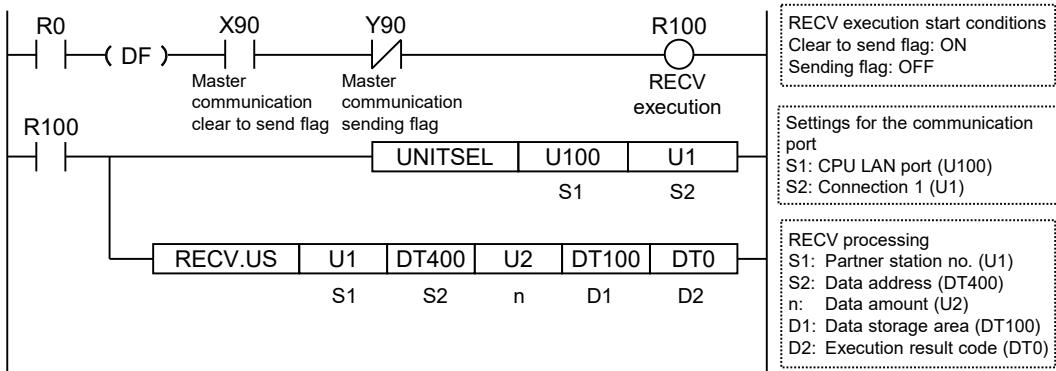
COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.


■ Precautions during programming (in the case of SCU)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM ports.

■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends the command from the LAN port of the CPU unit, reads the data from the data areas DT400 to DT401 of the external device, and writes the data into the data registers DT100 to DT101 of the PLC.
- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the RECV instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the RECV instruction, specify and execute the partner station number (U1), starting address (DT400), data amount (U2), and PLC's starting address to store the data (DT100).

8.3 MODBUS RTU Master Communication (RECV)

■ Time chart (in the case of CPU with built-in ET-LAN)

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

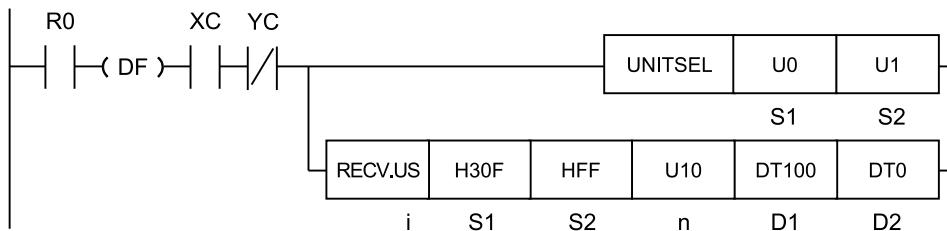
■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.

- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- For communication between LAN ports of FP7, specify "U1" for the partner station number. The receiver is determined by the IP address.

i Info.

- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. Refer to the section describing the case of SCU.


■ Flag operations

Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the destination range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Partner station number specified by [S1] is out of the range.
	Partner unit sender data device specified by [S2] is invalid.
	Sent data amount specified by [n] is invalid.
	Data device of the receiver data area in the master unit specified by [D1] is invalid, or exceeds the area.
	Result storage device specified by [D2] is invalid.
	Specified bit devices for [S2] and [D1], and/or specified 16-bit device, differ.
	Integer specification for [S2] is only available for the MODBUS address direct specification type. It is invalid for other types.

8.3 MODBUS RTU Master Communication (RECV)

8.3.3 RECV (MODBUS Master: Function Code Specification)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Items	Settings			Setting range		
S1	MODBUS function code to be used, and the partner station number					
	Higher byte	MODBUS function code (two hexadecimal digits)		H1 to H4 (1 to 4)		
S2	MODBUS starting address of the sender in the partner unit					
n	Number of received data					
D1	Device starting address of the receiver data area in the master unit					
D2	Starting address of the device area of the master unit that stores the execution result code (1 word)					

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r		St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	...		
S1	●	●	●	●			●	●							●	●					●	
S2	●	●	●	●			●	●							●						●	
n	●	●	●	●			●	●							●	●					●	

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	WI	W O	TS C S	TE C E	IX	K	U	H	SF	D F	...	
D1	•	•	•	•			•	•												•	
D2	•	•	•	•			•	•												•	

(Note 1) Only in the case of "direct address specification" (main instruction) in the MODBUS mode, an integer can be specified for the sender address.

■ Available bit devices (•: Available)

Operand	Bit device										Specification of bit of word device			Index modifier
	X	Y	R	L	T	C	P	E	S R	IN	O T	DT.n	LD.n	
S1														
S2	•	•	•	•							•		•	•
n														
D1	•	•	•	•							•		•	•
D2														

■ Outline of operation

- The MODBUS command is sent from the communication port of the unit to send/receive data to/from external devices.
- Data can be read and written by specifying station numbers and memory addresses and executing the SEND and RECV instructions in a user program, because PLC automatically creates messages according to the protocol.
- Specify the MODBUS command and the partner MODBUS address in a Hex format in [S1].
- When the RECV instruction is executed, data are read from the address starting with [S2] in the partner unit, and stored in the area starting with [D1] in the master unit.
- The transfer method (register transfer/bit transfer) and the MODBUS function code that can be used vary, depending on the type of device specified by [D1].
- The amount of received data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.
- The execution result code is stored in the one-word area of the master unit that is specified by [D2].

■ Specification of [S1] and [n]

- Operand [S1] is specified as a combination of a two-digit hexadecimal MODBUS function code and a two-digit hexadecimal partner station number.

Example: Specify "H030F" in the case of MODBUS function code 03 (read holding registers) and station number 15.

- The transfer method and the MODBUS function code that can be used vary, depending on the type of device specified by the operand [D1].

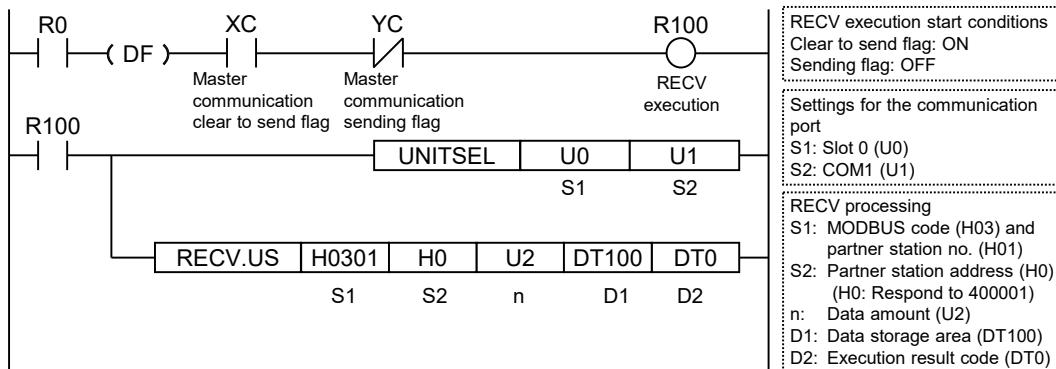
8.3 MODBUS RTU Master Communication (RECV)

Device to be specified for [D1]	Transfer method	Value that can be specified for high bytes of [S1]
16-Bit device: WX, WY, WR, WL, DT, LD	Register transfer	H1: Read coil state (01) H2: Read input state (02) H3: Read hold register (03) H4: Read input register (04)
1-Bit device: X, Y, R, L, DT.n, LD.n	Bit transfer	H1: Read coil state (01) H2: Read input state (02)

- The amount of received data is specified in words for the register transfer, and in bits for the bit transfer.

■ Execution result code [D2]

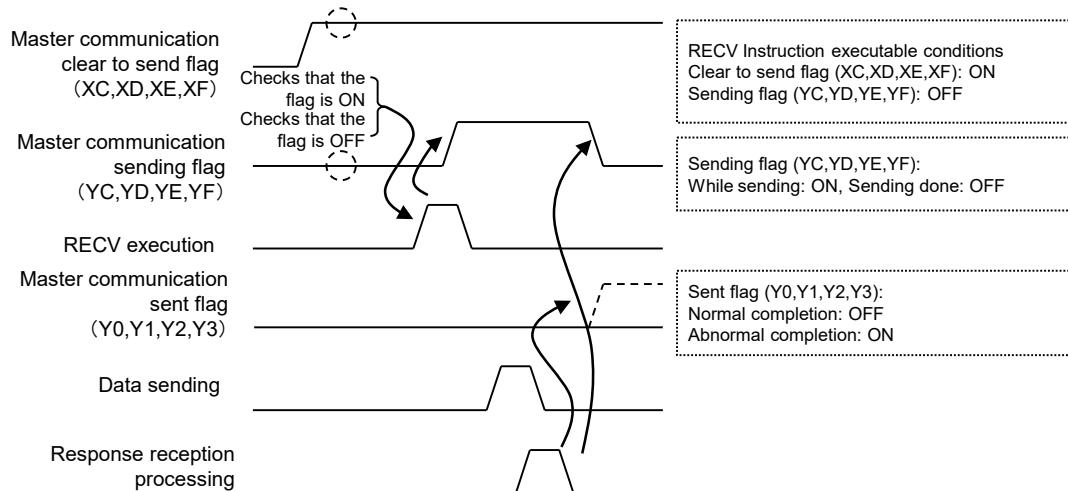
Code	Description	Code	Description
H0	Normal end	H6	Reception error (Note 1)
H1	The communication port is being used in the master communication.	H7	I/O allocation shortage error (Note 2)
H2	The communication port is being used in the slave communication.	H8	The send buffer is being used. (Note 3)
H3	The number of master communication instructions simultaneously used is exceeded.	H8001	Function code error
H4	Transmission timeout	H8002	Device number error (out of range)
H5	Response reception timeout	H8003	Device quantity error (out of range)


(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.

(Note 3) Effective when the version is 4.57 or later.

■ Sample program (in the case of SCU)


- This program sends the command from the COM1 port of the CPU unit, reads the data from the data areas 400001 to 400002 of the external device (station number 1), and writes the data into the data registers DT100 to DT101 of the PLC.
- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the RECV instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the RECV instruction, specify and execute the partner station number (U1), MODBUS command to be used and partner station number (H0301), starting address (400001), data amount (U2), and PLC's starting address to store the data (DT100). Check addresses of connected devices in the instruction manuals of devices.

(Note 1) Operand [S1] of RECV instruction is specified by combining two hexadecimal digits of MODBUS function code with two hexadecimal digits of partner device station number.

(Note 2) When the partner device is FP series PLC, Operand [S2] of RECV instruction can be specified using the device number.

■ Time chart (in the case of SCU)

1 Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- The communication cassette (Ethernet type) does not support MODBUS.

8.3 MODBUS RTU Master Communication (RECV)

■ I/O allocation (in the case of CPU with built-in SCU)

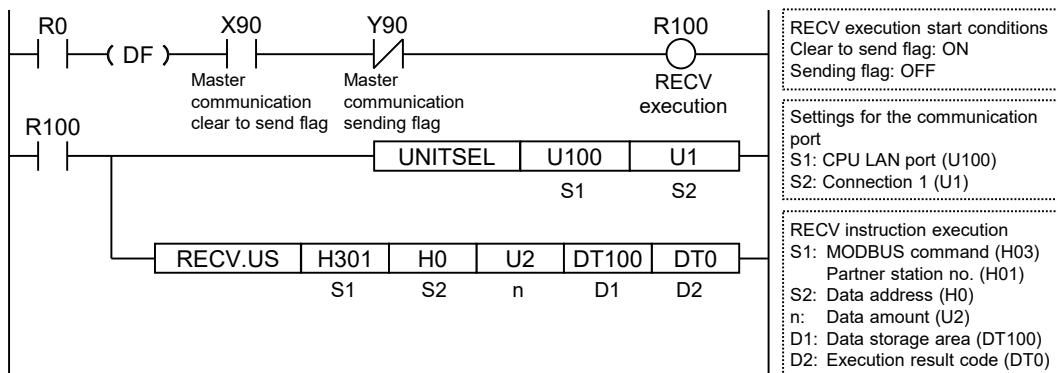
COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

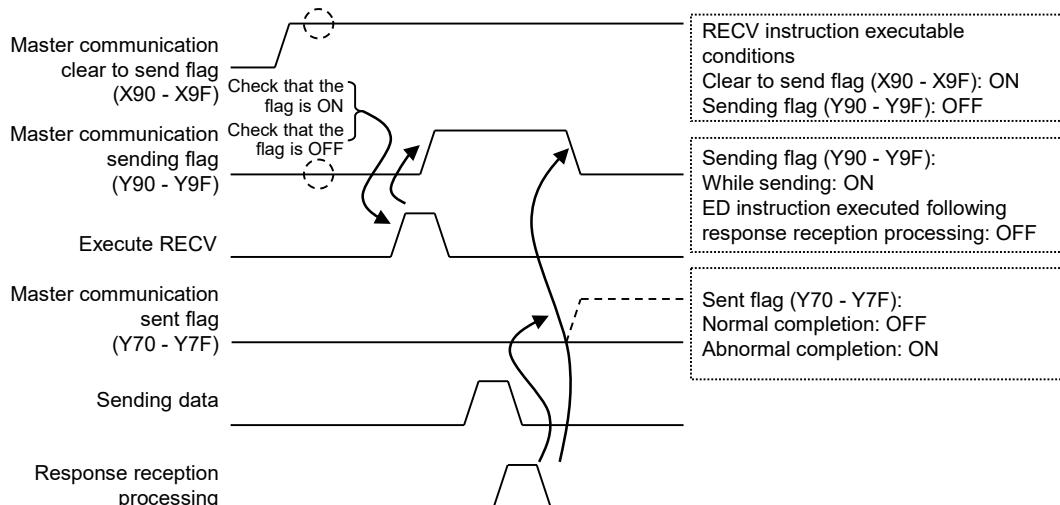
■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.


■ Precautions during programming (in the case of SCU)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress. If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM ports.


■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends MODBUS commands (03) from the LAN port of the CPU unit, reads the data from the data area of an external device 400001 to 400002 (MODBUS address 0000H to 0001H), and writes the content into PLC's data register DT100 to DT101.

- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the RECV instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the RECV instruction, specify and execute the type of MODBUS command and partner station number (H0301), starting address (H0), data amount (U2), and PLC's starting address to store the data (DT100). Check addresses of connected devices in the instruction manuals of devices.

■ Time chart (in the case of CPU with built-in ET-LAN)

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.

8.3 MODBUS RTU Master Communication (RECV)

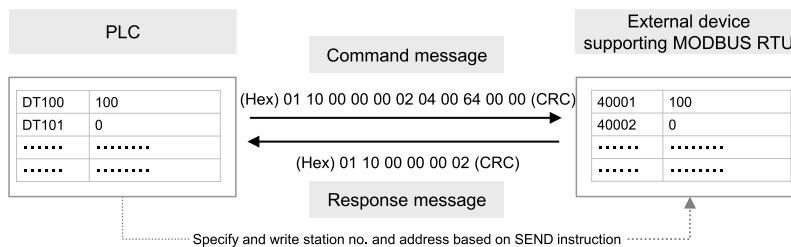
I/O number	Name	Description
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of CPU with built-in ET-LAN)

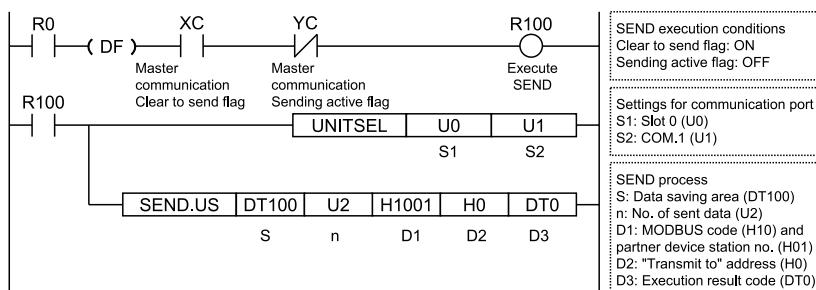
- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.
- Master communication is only enabled when MEWTTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- In the MODBUS-TCP mode, specify the partner station number as operand for the SEND/RECV instruction.

■ Flag operations


Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the destination range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Partner station number specified by [S1] is out of the range.
	Partner unit sender data device specified by [S2] is invalid.
	Sent data amount specified by [n] is invalid.
	Data device of the receiver data area in the master unit specified by [D1] is invalid, or exceeds the area.
	Result storage device specified by [D2] is invalid.
	Integer specification for [S2] is only available for the MODBUS address direct specification type. It is invalid for other types.

8.4 MODBUS RTU Master Communication (SEND)

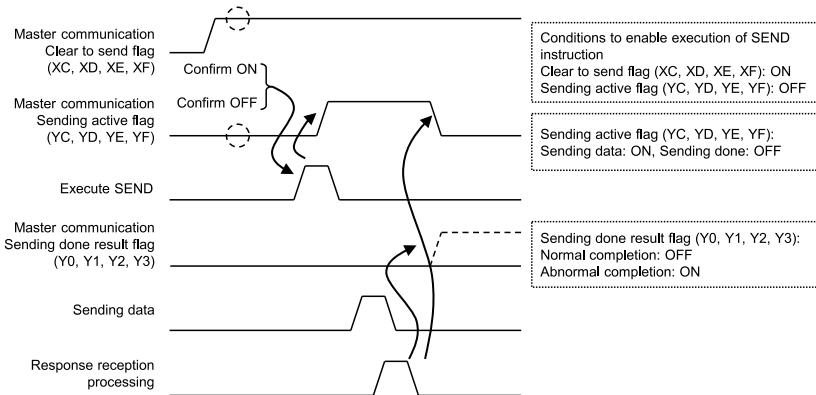
8.4.1 Write Data into an External Device


■ Instructions

In master communication, PLC has the sending right, and executes communication by sending commands to devices that support MODBUS RTU, and receiving responses. Messages in accordance with the protocol are automatically generated by PLC. In the user program, reading and writing can be done simply by specifying the station no. and memory address and executing SEND/RECV instructions.

■ Sample program

- Send commands from the COM.1 port of the CPU unit, and write the content of PLC's data register DT100 - DT101 into the data area of an external device (station no. 1) 40001 - 40002.
- Confirm that the unit is in the master mode (XC), and that the sending process is not in progress for the same port (YC), and start up the SEND instruction.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the SEND instruction, specify and execute the PLC initial address (DT100), No. of data (U2), MODBUS function code to be used (16: H10), partner device station no. (H01), and initial address (H0). For the address of the partner device, please check operating instructions, etc. of the relevant device.


(Note 1) Operand [D1] of SEND instruction is specified by combining two hexadecimal digits of MODBUS function code with two hexadecimal digits of partner device station no. When the MODBUS function code is 16, [D1] H10 should be specified.

(Note 2) When the partner device is FP series PLC, Operand [D2] of SEND instruction can be specified using the device no.

(Note 3) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

8.4 MODBUS RTU Master Communication (SEND)

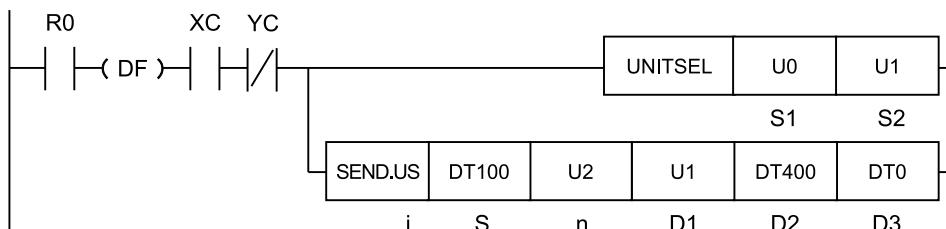
■ Timing chart

■ I/O allocation (CPU Unit)

COM. port no.			Name	Description
1	2	0		
XC	XD	XE	Master communication Clear to send flag	Turns ON when MODBUS RTU is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

■ I/O allocation (For Serial Communication Unit)

COM. port no.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication Clear to send flag	Turns ON when MODBUS RTU is set for the communication mode and the unit is in RUN mode.
YC	YD	YE	YF	Master communication Sending active flag	Turns ON during transmission using SEND/RECV instructions. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation status. Do not write over it with a user program.

1 Info.

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only valid when MODBUS is selected. Confirm that the "Master communication Clear to send flag" (XC - XF) for the targeted channel is ON, and execute SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "Master communication Sending active flag" (YC - YF) is OFF, and execute instruction.
- If no response is received, the "Master communication Sending active flag" (YC - YF) remains ON throughout the timeout setting time specified in CPU configuration.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM. ports.

8.4.2 SEND (MEWTOCOL Master / MODBUS Master)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operatio n unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Operand	Description
S	Starting address of the sender data area
n	Amount of sent data
D1	Partner station number
D2	Starting address of the device in the receiver data area of the partner unit
D3	Starting address of the device area of the master unit that stores the execution result code (1 word)

8.4 MODBUS RTU Master Communication (SEND)

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	“ ”	
S	●	●	●	●				●	●											●	
n	●	●	●	●				●	●							●	●			●	
D1	●	●	●	●				●	●							●	●			●	
D2 ^(Note 1)	(N ote 2)	●	●	(N ote 2)				●	(N ote 2)											●	
D3	●	●	●	●				●	●											●	

(Note 1) When the destination unit is FP7, only global devices can be specified. (Local devices cannot be specified.)

(Note 2) In the MODBUS mode, this cannot be specified as the receiver.

■ Available bit devices (●: Available)

Operand	Bit device												Specification of bit of word device			Index modifier
	X	Y	R	L	T	C	P	E	SR	IN	OT	DT.n	LD.n			
S	●	●	●	●								●		●		●
n																
D1																
D2 ^(Note 1)	(Not e 2)	●	●	(Not e 2)												●
D3																

(Note 1) When the receiver is FP7, only global devices can be specified. (A local device cannot be specified.)

(Note 2) In the case of MODBUS and MEWTOCOL-COM, a bit device cannot be specified.

■ Outline of operation

- Commands are sent from the communication port of the unit to perform the data transmission with external devices. Message in accordance with the protocol is automatically formulated by PLC. The user program only has to specify the station number and the memory address, and execute the SEND/RECV instruction, to carry out reading and writing.
- Select **acommunication mode** in the configuration menu of the tool software FPWIN GR7.
- When the SEND instruction is executed, data are read from the device in the master unit, starting with [S], and stored in the address starting with [D2] of the partner unit.
- The transfer method (register transfer/bit transfer) varies according to the device types that are specified by [S] and [D2].
- The amount of sent data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.

- The execution result code is stored in the one-word area of the master unit that is specified by [D3].

■ Setting the amount of sent data [n]

Transfer method	Communication Mode	Amount of sent data n	Note
Register transfer	MEWTOCOL-COM	1 to 507 words	
	MEWTOCOL-DAT	1 to 1020 words	Connection setting: MEWTOCOL Communication type setting: Connect with FP2 ET-LAN
		1 to 2038 words	Connection setting: MEWTOCOL Communication type setting: Do not connect with FP2 ET-LAN
Bit transfer	MODBUS	1 to 127 words	Use MODBUS command 15 (to write to WY or WR) and command 16 (to write multiple words to DT).
	MEWTOCOL-COM	Fixed at 1 bit	During MEWTOCOL-COM, WCS command is used.
	MEWTOCOL-DAT	Fixed at 1 bit	During MEWTOCOL-DAT, contact information write 52H is used.
MODBUS	MODBUS	1 to 2040	Use the force multiple coils command 15.

(Note 1) The transfer method varies according to the device type specified for operands [S] and [D2]. The register transfer is used for 16-bit devices and the bit transfer is used for 1-bit devices.

(Note 2) The amount of sent data is specified in words for the register transfer and in bits for the bit transfer.

■ Specification of partner unit station number [D1]

Communication Mode	When SCU is used	When ET-LAN is used
MEWTOCOL-COM	1 to 99, 238 (decimal) = EE (hexadecimal)	1 to 64, 238 (decimal) = EE (hexadecimal)
MEWTOCOL-DAT	Non-SCU-compliant	
MODBUS	0 to 255	0 to 255

(Note 1) In the case of SCU, when "0" is specified for the partner station number, global transfer is selected. In this case, there is no response message from the destination.

(Note 2) For connection between FP7 and FP7, specify "1". Destination is determined by the IP address.

■ Specification of destination address [D2]

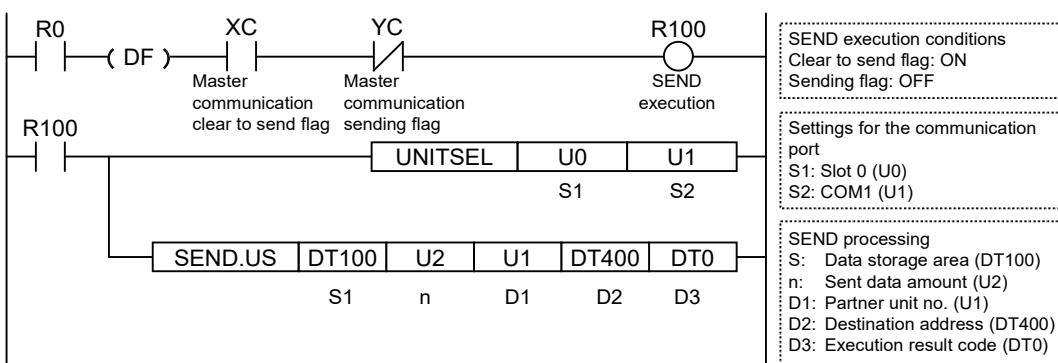
Transfer method	Communication Mode	Address range
Register transfer	MEWTOCOL-COM	0 to 99999
	MEWTOCOL-DAT	0 to 65535F
	MODBUS	0 to 65535 (H FFFF)
Bit transfer	MEWTOCOL-COM	0 to 999F
	MEWTOCOL-DAT	0 to 65535 (H FFFF)
	MODBUS	0 to 65535 (H FFFF)

(Note 1) When the receiver is the file register FL, specify a constant. Example) For FL100, specify U100. For the file register, only bank 0 can be specified.

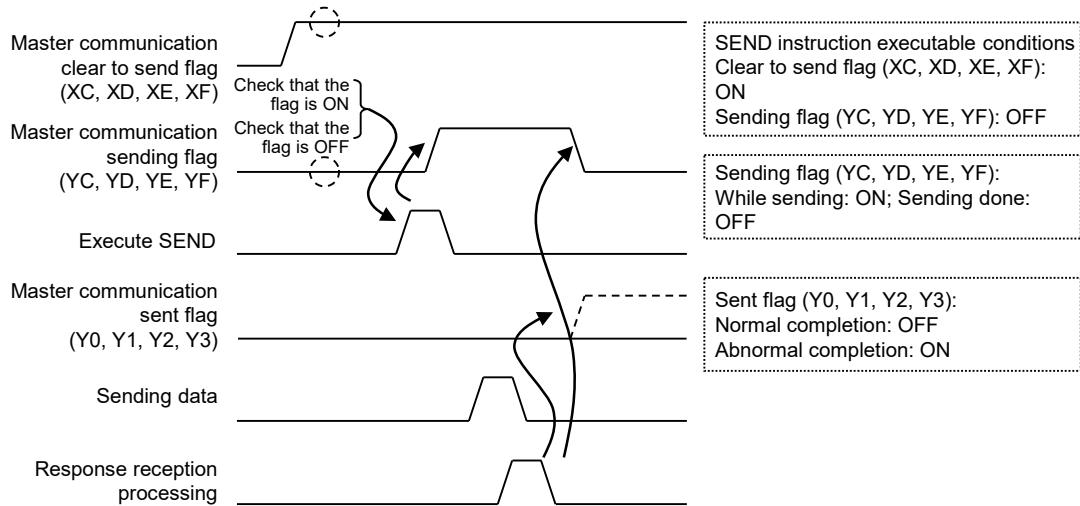
8.4 MODBUS RTU Master Communication (SEND)

■ Execution result code [D3]

Code	Description	Code	Description
H0	Normal end	H7	I/O allocation shortage error (Note 2)
H1	The communication port is being used in the master communication.	H8	The send buffer is being used. (Note 3)
H2	The communication port is being used in the slave communication.	H41	Format error
H3	The number of master communication instructions simultaneously used is exceeded.	H60	Parameter error
H4	Transmission timeout	H61	Data error
H5	Response reception timeout	H91	Missing expansion slave unit error
H6	Reception error (Note 1)		


(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.


(Note 3) Effective when the version is 4.57 or later.

■ Sample program (in the case of SCU)

- This program sends the command from the COM1 port of the CPU unit to write the content of PLC's data registers DT100 to DT101 into the data areas DT400 to DT401 of the external device (station number 1).
- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the SEND instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the SEND instruction, specify and execute the source's starting address (DT100) and data amount (U2), the destination's station number (U1) and starting address (DT400).

■ Time chart (in the case of SCU)

1 Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. The communication cassette (Ethernet type) does not support MODBUS.

■ I/O allocation (in the case of CPU with built-in SCU)

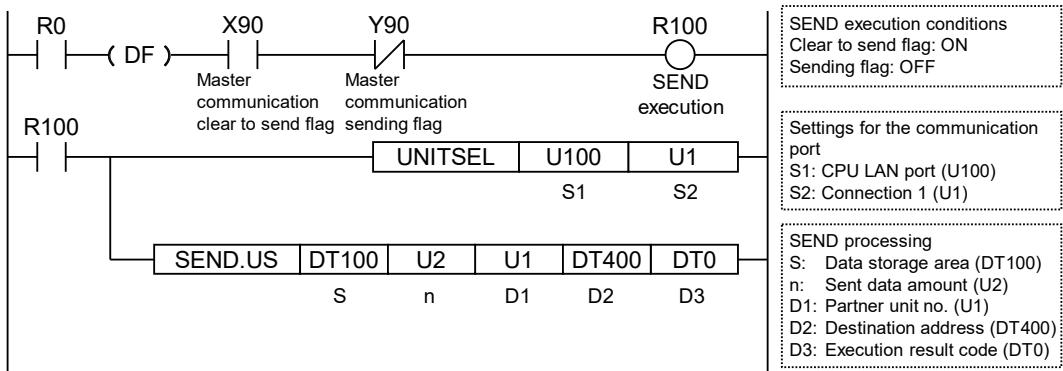
COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOMCOL-COM, MEWTOMCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

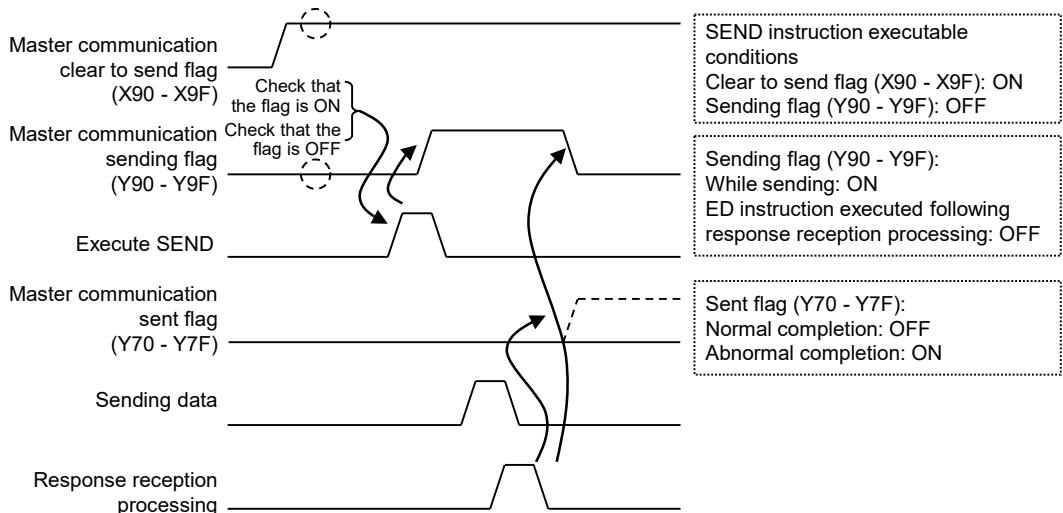
8.4 MODBUS RTU Master Communication (SEND)

■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)


(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of SCU)


- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.
- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM ports.

■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends the command from the LAN port of the CPU unit to write the content of PLC's data registers DT100 to DT101 into the data areas DT400 to DT401 of the external device.
- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the SEND instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the SEND instruction, specify and execute the source's starting address (DT100) and data amount (U2), the destination's station number (U1) and starting address (DT400).

■ Time chart (in the case of CPU with built-in ET-LAN)

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

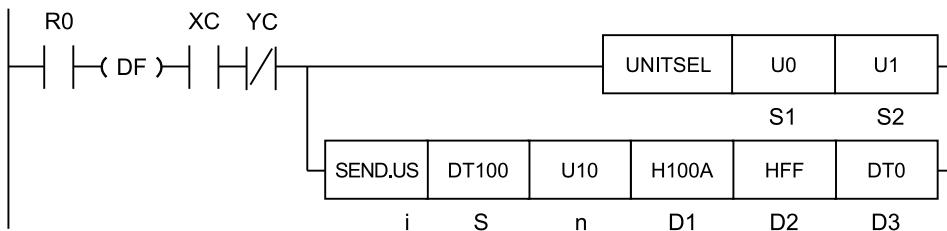
■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.

8.4 MODBUS RTU Master Communication (SEND)

- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- For communication between LAN ports of FP7, specify "U1" for the partner station number. The receiver is determined by the IP address.

Info.


- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of the CPU with built-in SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. Refer to the section describing the case of SCU.

■ Flag operations

Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the source range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Data device specified by [S] is invalid, or exceeds the area.
	Sent data amount specified by [n] is invalid.
	Station number specified by [D1] is out of the range.
	Data device specified by [D2] is invalid, or exceeds the area.
	Result storage device specified by [D3] is invalid.
	Integer specification for [D2] is only available for the MODBUS direct address specification type. It is invalid for other types.
	Specified bit devices for [S] and [D2], and/or specified 16-bit device, differ.

8.4.3 SEND (MODBUS Master: Function Code Specification)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Items	Settings				Setting range		
S	Starting address of the sender data area				-		
n	Amount of sent data				1 to 127 words 1 to 2040 bits		
D1	MODBUS command to be used, and the partner station number						
	Higher byte	MODBUS function code (two hexadecimal digits)		H5, H6, HF, H10			
	Lower byte	Partner station number (two hexadecimal digits)		H0 to HFF (0 to 255)			
D2	MODBUS starting address of the receiver data area of the partner unit				H0 to HFFFF (0 to 65535)		
D3	Starting address of the device area of the master unit that stores the execution result code (1 word)				-		

■ Available word devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	" "	
S	●	●	●	●			●	●												●	
n	●	●	●	●			●	●							●	●				●	
D1	●	●	●	●			●	●							●	●				●	

8.4 MODBUS RTU Master Communication (SEND)

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	TS C S	TE C E	IX	K	U	H	SF	D F	“ ”	
D2	•	•	•	•				•	•								•	(N ote 1)			
D3	•	•	•	•				•	•											•	

(Note 1) When the destination unit is FP7, only global devices can be specified. (Local devices cannot be specified.)

■ Available bit devices (•: Available)

Operand	Bit device												Specification of bit of word device			Index modifier
	X	Y	R	L	T	C	P	E	SR	IN	OT	DT.n	LD.n			
S	•	•	•	•								•	•	•	•	
n																
D1																
D2																
D3																

■ Outline of operation

- The MODBUS command is sent from the communication port of the unit to perform the data transmission with external devices.
- Data can be read and written by specifying station numbers and memory addresses and executing the SEND and RECV instructions in a user program, because PLC automatically creates messages according to the protocol.
- Select a communication mode in the configuration menu of the tool software FPWIN GR7.
- Specify the MODBUS command to be used, and the partner MODBUS station number, in a Hex format in [D1].
- When the SEND instruction is executed, data are read from the device in the master unit, starting with [S], and stored in the address starting with [D2] of the partner unit.
- The transfer method (register transfer/bit transfer) and the type of MODBUS command that can be used vary, depending on the type of device specified by [S] and data amount specified by [n].
- The amount of sent data [n] is specified in words for the register transfer, and in the number of bits for the bit transfer.
- The execution result code is stored in the one-word area of the master unit that is specified by [D3].

■ Specification of [S], [n] and [D1]

- The transfer method and the MODBUS function code that can be used vary, depending on the type of device specified by the operand [S] and the sent data amount specified by [n].

Types of device to be specified for [S]	Transfer method	Number of sent data [n]	Value that can be specified for high bytes of [D1]
16-Bit device: WX, WY, WR, WL, DT, LD	Register transfer	1	H6: Preset single register (06) HF: Force multiple coils (15) H10: Preset multiple registers (16)
		2 to 127	HF: Force multiple coils (15) H10: Preset multiple registers (16)
1-Bit device: X, Y, R, L, DT.n, LD.n	Bit transfer	1	H5: Force single coil (05) HF: Force multiple coils (15)
		2 to 2040	HF: Force multiple coils (15)

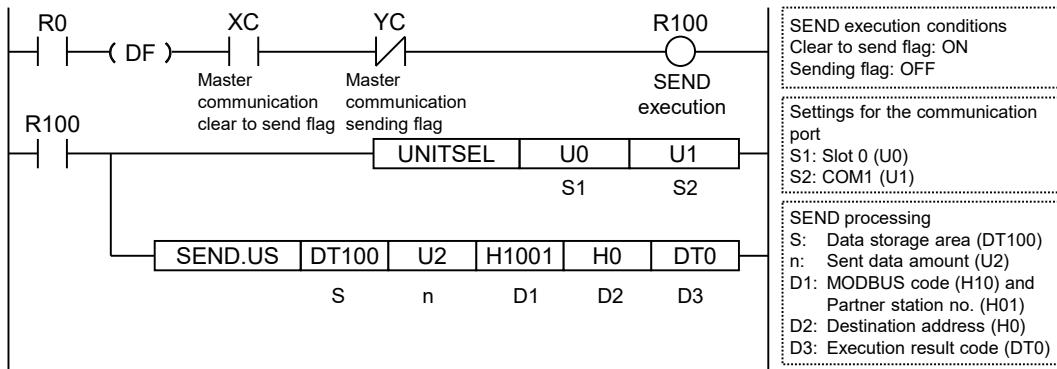
- The amount of sent data [n] is specified in words for the register transfer, and in bits for the bit transfer.
- Operand [D1] is specified as a combination of a two-digit hexadecimal MODBUS function code and a two-digit hexadecimal partner station number.
Example: Specify "H100A" in the case of MODBUS function code 16 (preset multiple registers) and station number 10.
- In the case of SCU, when "0" is specified for the partner station number, global transfer is selected. In this case, there is no response message from the destination.

■ Execution result code [D3]

Code	Description	Code	Description
H0	Normal end	H6	Reception error(Note 1)
H1	The communication port is being used in the master communication.	H7	I/O allocation shortage error(Note 2)
H2	The communication port is being used in the slave communication.	H8	The send buffer is being used. (Note 3)
H3	The number of master communication instructions simultaneously used is exceeded.	H8001	Function code error
H4	Transmission timeout	H8002	Device quantity error (out of range)
H5	Response reception timeout	H8003	Device quantity error (out of range)

(Note 1) It occurs when an abnormal telegram is received. When there is a format error in the header of an individual protocol, the communication discards the received data and a response reception timeout occurs.

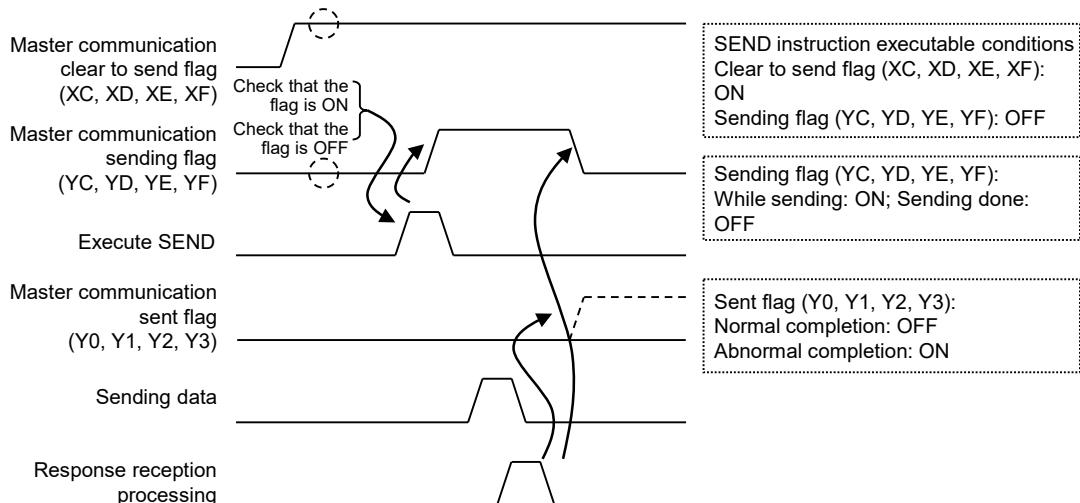
(Note 2) It occurs when the communication control I/O relays corresponding to the communication port (master communication clear to send flag, master communication send active flag, master communication send done result relay) are not allocated as I/O words of the CPU unit in the I/O map. It occurs only when the number of user connections of ET-LAN is expanded and this instruction is executed specifying the expanded connections.


(Note 3) Effective when the version is 4.57 or later.

■ Sample program (in the case of SCU)

- This program sends the command from the COM1 port of the CPU unit, and then writes the content of PLC's data registers DT100 to DT101 into the data areas 400001 to 400002 of the external device (station number 1).

8.4 MODBUS RTU Master Communication (SEND)


- This program checks that the master mode is on (XC) and that sending is not in progress in the same port (YC), and then starts up the SEND instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the SEND instruction, specify and execute PLC's starting address (DT100) and data amount (U2), MODBUS function code to be used (16: H10), and partner station number (H01) and starting address (H0). Check addresses of connected devices in the instruction manuals of devices.

(Note 1) Operand [D1] of SEND instruction is specified by combining two hexadecimal digits of MODBUS function code with two hexadecimal digits of partner device station number. When the MODBUS function code is 16, [D1] H10 should be specified.

(Note 2) When the partner device is FP series PLC, Operand [D2] of SEND instruction can be specified using the device number.

■ Time chart (in the case of SCU)

1 Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- The communication cassette (Ethernet type) does not support MODBUS.

■ I/O allocation (in the case of CPU with built-in SCU)

COM Port No.			Name	Description
1	2	0		
XC	XD	XE	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

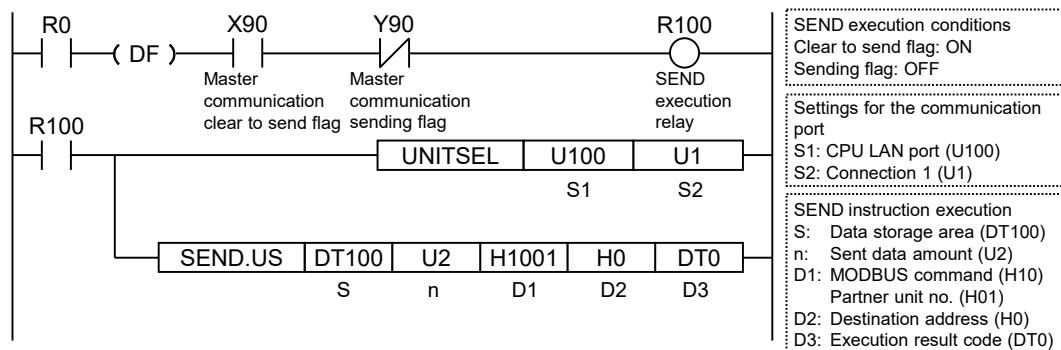
(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ I/O allocation (in the case of Serial Communication Unit)

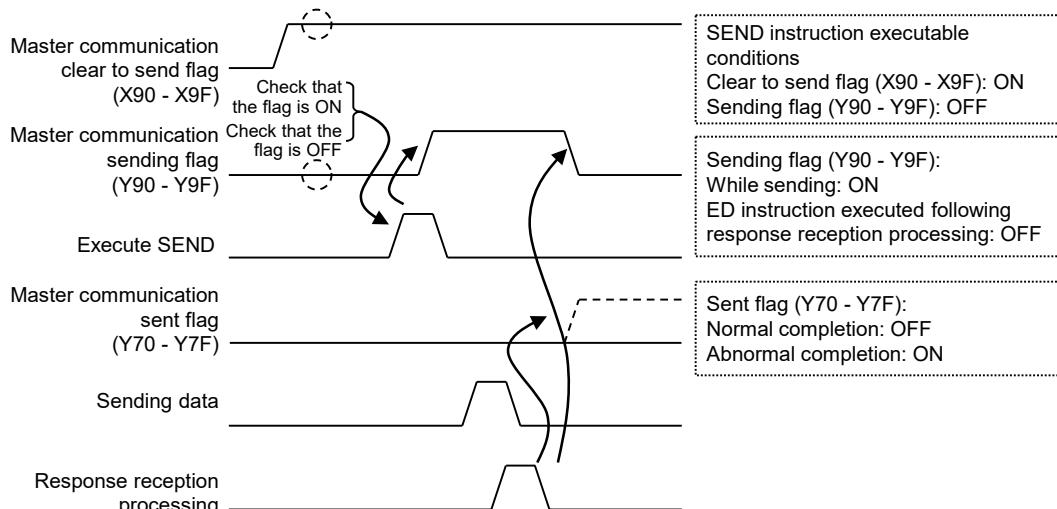
COM Port No.				Name	Description
1	2	3	4		
XC	XD	XE	XF	Master communication clear to send flag	Turns ON when MEWTOCOL-COM, MEWTOCOL7, or MODBUS-RTU is set for the communication mode, and the unit is in the RUN mode.
YC	YD	YE	YF	Master communication sending flag	Turns ON during sending data based on SEND/RECV instruction. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of SCU)


- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target port for communication.
- Master communication is only enabled when MEWTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (XC to XF) are ON for the corresponding channel, and execute the SEND/RECV instruction.
- Another SEND/RECV instruction cannot be executed for a communication port where master communication is in progress. Confirm that the "master communication sending flags" (YC to YF) are OFF, and execute the instruction.

8.4 MODBUS RTU Master Communication (SEND)


- A SEND/RECV instruction cannot be executed for a port where slave communication is in progress.
- If there is no response, the "master communication sending flags" (YC to YF) remain ON during the time-out period set in the CPU configuration.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing COM. ports.

■ Sample program (in the case of CPU with built-in ET-LAN)

- This program sends the MODBUS command (16) from the LAN port of the CPU unit, and then writes the content of PLC's data registers DT100 to DT101 into the data areas 400001 to 400002 of the external device (MODBUS addresses 0000H to 0001H).
- After it is confirmed that connection 1 is established in master mode (X90) and no transmissions are currently being executed for the same port (Y90), the SEND instruction is started.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the SEND instruction, specify and execute PLC's starting address (DT100) and data amount (U2), MODBUS command (16 = H10), and partner station number (H01) and starting address (H0). Check addresses of connected devices in the instruction manuals of devices.

■ Timing chart

■ I/O allocations

I/O number	Name	Description
X90 to X9F	Master communication clear to send flag	Turns ON when a connection is established in the master communication.
Y90 to Y9F	Master communication sending flag	Turns ON during sending data based on the SEND/RECV instruction. Turns OFF when the ED instruction is executed after the completion of the response receive processing.
Y70 to Y7F	Sent flag	Reports completion result of sending data in genera-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the SEND/RECV instruction to specify a target connection number for communication.
- Master communication is only enabled when MEWTTOCOL or MODBUS is selected. Confirm that the "master communication clear to send flags" (X90 to X9F) are ON for the corresponding connection, and execute the SEND/RECV instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the master communication is in progress. Confirm that the "master communication sending flags" (Y90 to Y9F) are OFF, and execute the instruction.
- The SEND or RECV instruction cannot be executed for the connection for which the slave communication is in progress.
- Up to 16 SEND/RECV instructions can be executed simultaneously for differing connections.
- In the MODBUS-TCP mode, specify the partner station number as operand for the SEND/RECV instruction.

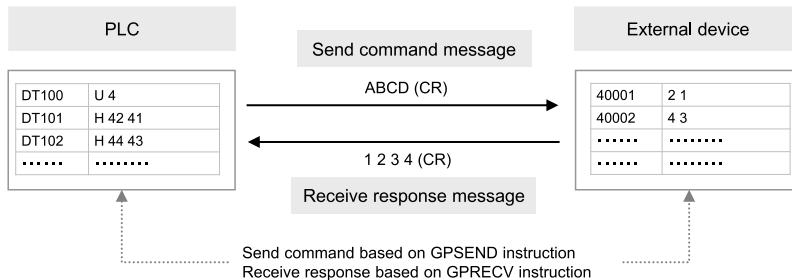
■ Flag operations

Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the source range is outside the accessible range.
	COM port or connection specified by UNITSEL does not exist, or communication is not possible in the specified connection.
	Data device specified by [S] is invalid, or exceeds the area.
	Sent data amount specified by [n] is invalid.
	MODBUS command and/or station number specified by [D1] is invalid.
	Data device specified by [D2] is invalid, or exceeds the area.
	Result storage device specified by [D3] is invalid.
	Integer specification for [D2] is only available for the MODBUS address direct specification type. It is invalid for other types.
	Result storage device specified by [D3] is invalid.

(MEMO)

9 General-Purpose Communication

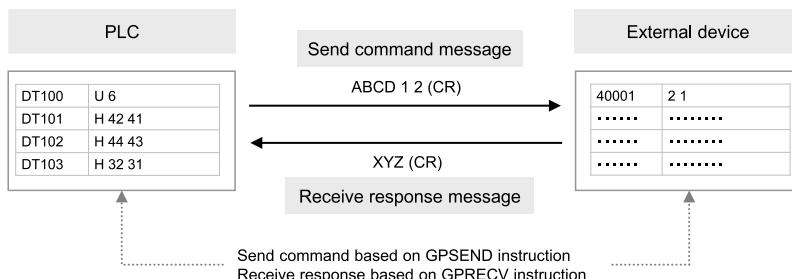
9.1	Operation of General-Purpose Communication	9-2
9.1.1	Read Data from an External Device	9-2
9.1.2	Write Data into an External Device	9-2
9.2	Configuration.....	9-3
9.2.1	Setting Communication Conditions	9-3
9.3	Sending Operation	9-4
9.3.1	Overview of Sending Operation	9-4
9.3.2	Contents of Sent Data.....	9-6
9.3.3	GPTRNS / pGPSEND /GPSEND (General-Purpose Communication Send Instruction).....	9-6
9.3.4	Precautions on Sending Data	9-16
9.4	Receiving Operation	9-18
9.4.1	Overview of Receiving Operation	9-18
9.4.2	Contents of Received Data	9-20
9.4.3	Precautions on Receiving Data.....	9-20
9.4.4	Operations of the "Reception Done Copy" Flag and Multiplex Reception.....	9-21
9.4.5	GPRECV (General-Purpose Communication Receive Instruction) .	9-21
9.5	Sending/Receiving Flag Operation	9-28
9.5.1	No Header (Start Code), Terminator (End Code) "CR":	9-28
9.5.2	Start Code "STX", End Code "ETX":.....	9-29


9.1 Operation of General-Purpose Communication

9.1 Operation of General-Purpose Communication

9.1.1 Read Data from an External Device

■ Read data from a partner device


In general-purpose communication, communication is executed by sending commands that suit the partner device, and receiving responses. Command messages are sent by formulating a data table for message in accordance with the protocol, on the given data register, and subsequently executing GPSEND instruction.

9.1.2 Write Data into an External Device

■ Write data into a partner device

In general-purpose communication, communication is executed by sending commands that suit the partner device, and receiving responses. Command messages are sent by formulating a data table for message in accordance with the protocol, on the given data register, and subsequently executing GPSEND instruction.

Info.

- There is no relevance between the operation of transmission by GPSEND instruction and the operation of reception by GPRECV instruction. The CPU with built-in SCU unit is always clear to receive data.

9.2 Configuration

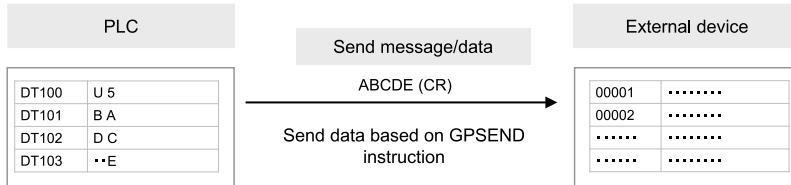
9.2.1 Setting Communication Conditions

■ Configuration

Setting items	Default	Specification range	Remark
Communication mode	MEWTOCOL-COM	General-purpose communication	Specify "general-purpose communication".
Station no.	1	1 to 999	Settings are not necessary.
Baud rate	9600	300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200 / 230400	The setting must be done according to the devices connected.
Data length	8 bit	7 bit / 8 bits	
Parity	Odd	None / Odd / Even	
Stop bit	1 bit	1 bit / 2 bits	
RS/CS	Invalid	Invalid / Valid	Set to "Valid" only when communication Cassette AFP7CCRS2 is used in a 5-wire mode.
Send waiting time (set value × 0.01 ms)	0	0 to 10000 (0 to 100 ms)	The setting is used when it is necessary to delay data transmission to the partner device.
Start code STX	Invalid	Invalid / Valid	The setting must be done according to the devices connected.
Terminator setting	CR	CR / CR+LF / Time / ETX	
Terminator judgment time (unit: 0.01 ms)	0	0 to 10000 (0 to 100 ms)	In cases where "Time" is specified in the terminator setting, set the time for judging the terminator. If 0 is set, reception will be completed after 32 bits worth of time elapses.
Modem initialization	Do not initialize	Do not initialize / Initialize while performing settings / Re-initialize while performing settings	Perform settings only when a modem is to be connected. Perform settings for start-up modem initialization.

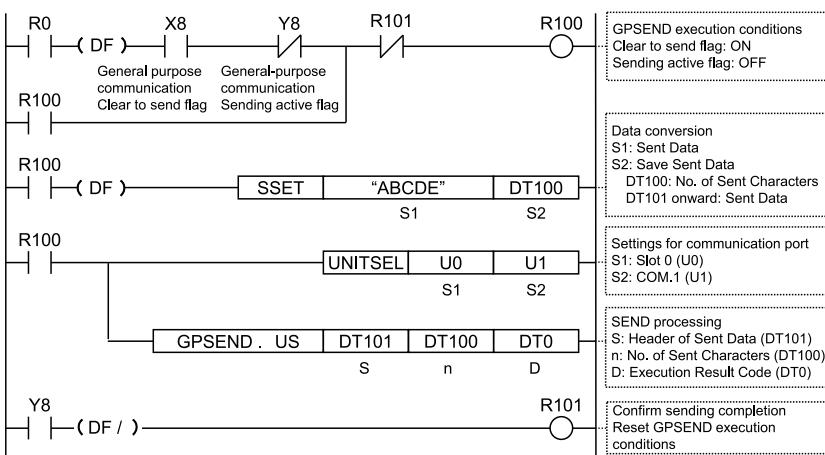
(Note 1) In general-purpose communication, the following setting items need not be specified.

Station no., PLC link


9.3 Sending Operation

9.3 Sending Operation

9.3.1 Overview of Sending Operation


■ Instructions

Sending in the general-purpose communication is performed by formulating a data table for sending on the given operation memory, and subsequently executing GPSEND instruction.

■ Sample program

- Confirm that the unit is in the general-purpose communication mode (X8), and that the general-purpose sending process is not in progress for the same port (Y8), and start up the sending program.
- In the SSET instruction, convert a given message into an ASCII text string, and specify the number of strings to be sent in the data register DT100, and the message to be sent from the data register DT101.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the GPSEND instruction, specify and execute the header of the table where the message to be sent is saved (DT101) and the No. of characters (DT100).

(Note 1) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

■ Timing chart

- Data in the table [S] specified by GPSEND instruction are sent, in ascending order from lower bytes.
- During the sending process, the "General-purpose communication Sending active flag" (Y8, Y9, YA, YB) turns ON. The flag is turned OFF when sending is completed. (The flag does not

turn off right after the execution of the instruction. It turns off at the beginning of the second scan.)

- The sending result (0: normal completion, 1: abnormal completion) is saved in the general-purpose communication sending result flag (Y0, Y1, Y2, Y3).

■ I/O allocation (For CPU Unit)

COM. port no.			名称	説明
1	2	0		
X8	X9	XA	General-purpose communication Clear to send flag	Turns ON when the unit is set to the general-purpose communication mode.
Y8	Y9	YA	General-purpose communication Sending active flag	Turns ON during sending data based on general-purpose communication GPSEND. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

■ I/O allocation (For Serial Communication Unit)

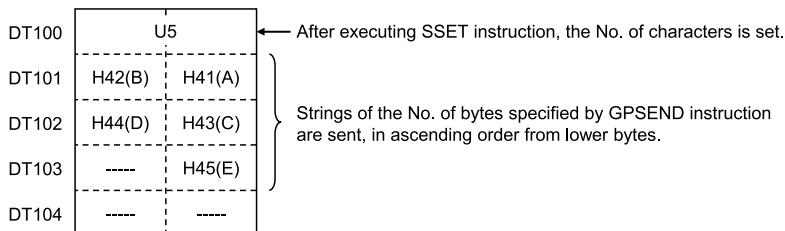
COM. port no.				Name	Description
1	2	3	4		
X8	X9	XA	XB	General-purpose communication Clear to send flag	Turns ON when the unit is set to the general-purpose communication mode.
Y8	Y9	YA	YB	General-purpose communication Sending active flag	Turns ON during sending data based on general-purpose communication GPSEND. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Y3	Sending done result flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation status. Do not write over it with a user program.

(Note 2) If sending time is shorter than scan time, the general-purpose communication sending flags (Y8, Y9, YA, YB) are turned OFF when the GPSEND instruction is executed in the subsequent scan following completion of data sending. In all cases, it is turned ON for at least one scan time.

9.3 Sending Operation

Info.

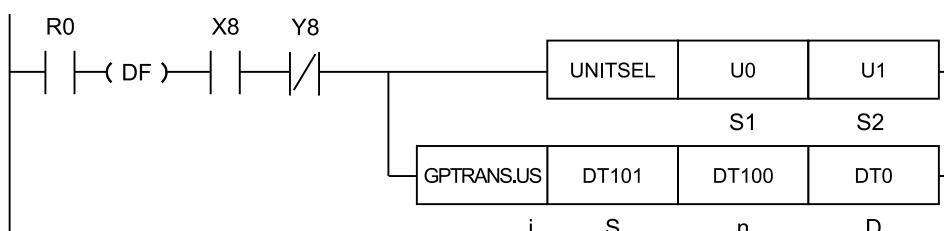

- Specify the port targeted for communication, using UNITSEL instruction immediately before GPSEND instruction.
- Maintain the ON conditions for GPSEND instruction until sending is completed and the general-purpose communication sending active flag (Y8, Y9, YA, YB) turns OFF.

9.3.2 Contents of Sent Data

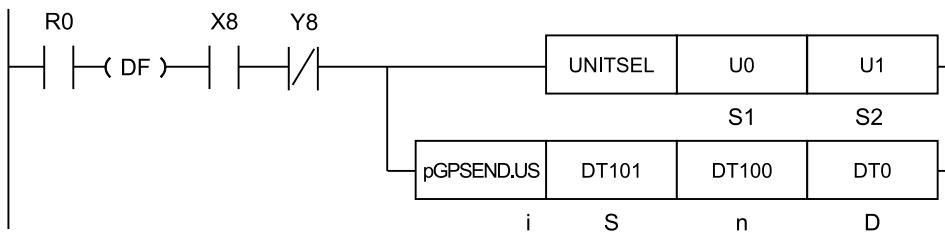
Strings data sent by the GPSEND instruction are converted into ASCII text and saved in a given data register.

Sent data table

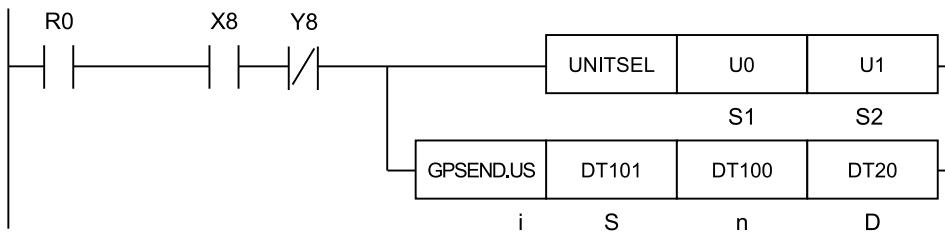
- Once the sent data are converted into strings data using the SSET instruction, the No. of characters is saved in the header area. The sent data are saved starting with lower bytes of the subsequent address.



Info.


- The start code and the end code specified in the configuration menu are automatically added to the sent data. Do not include the start code or the end code into sent data.
- The maximum volume of data that can be sent is 4,096 bytes. If the start code is set to valid, the maximum size is 4,096 bytes including the start code and the end code.
- It is also possible to send binary data.

9.3.3 GPTRNS / pGPSEND /GPSEND (General-Purpose Communication Send Instruction)


Ladder diagram (GPTRNS)

■ Ladder diagram (pGPSEND)

■ Ladder diagram (GPSEND)

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

■ Available operation units (●: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

(Note 1) When a negative value is specified for operand [n], it is necessary to specify an SS operation unit.

■ List of operands

Operand	Description													
S	Starting number for the device for storing the sent data													
n	Number of bytes of the sent data, or starting number of the device where the amount of sent data is stored													
D	Starting number of the device that stores the processing result (1 word)													

■ Available devices (●: Available)

Operan d	16-Bit device:												32-Bit device:			Integer		Real numbe r	St rin g	Index modifier
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	T S C S	T E C E	I X	K	U	H	S F	D F	...
S1	●	●	●	●			●	●												●

9.3 Sending Operation

Operan d	16-Bit device:												32-Bit device:			Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	TS C S	TE C E	IX	K	U	H	S F	D F	“ ”	
n <small>(Note 1)</small>	•	•	•	•			•	•							•	•	•				•
D <small>(Note 1)</small>	•	•	•	•			•	•													•

(Note 1) Always 16-bit data/device, regardless of the specification of operation units [i].

■ Outline of operation

- Data are sent from the communication port to external devices.
- Data of [n] bytes are sent from the unit / communication port set by the UNITSEL instruction, starting with the starting address (word address) of the sent data area specified by [S].
- Data to be sent are set by the user program, in the area starting with [S].
- The processing result is stored in the area specified by [D].

■ Processing

- The slot numbers and communication port numbers specified with UNITSEL instruction are obtained from the system data register (SD).
- This instruction confirms that the general-purpose communication clear to send flag of a specified communication port is ON and the general-purpose communication sending flag is OFF.
- When sending is enabled, sent data is transferred to the send buffer of a communication port and a request to send is executed.

Info.

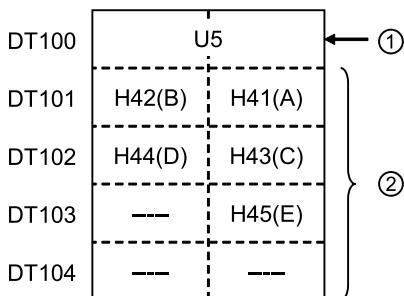
- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- The case of ET-LAN shows the case that it is used in the following combination.
 - LAN port equipped in the CPU unit (Applicable models: CPU unit CPS4RE* and CPS3RE* only)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN.

■ Comparison of GPTRNS / pGPSEND / GPSEND instructions

Instruction	Characteristics	
GPTRNS pGPSEND <small>(Note 1)</small>	The data send confirmation process is performed on the completion of scan. <small>(Note 2)</small>	
	Adv anta ge	Data is sent only once by turning on execution conditions at the time of data send.

Instruction	Characteristics			
	Disadvantage	Up to 16 send operations can be performed simultaneously to different COM ports and connections. (The total of simultaneous usage of SEND, RECV, GPTRNS, pGPSEND, and pPMSET instructions)		
GPSEND	Advantage	The data send confirmation process is performed in the operation processing for the GPSEND instruction. (Note 2)		
	Disadvantage	Data can be sent to different COM ports and connections simultaneously without limit.		
		It is necessary to turn ON the execution condition of the GPSEND instruction until the end of data sending, and turn OFF the execution condition at a scan in which the end of data transmission is confirmed.		

(Note 1) As the result of executing an operation, the conditions under which an error is set for operand [D] will vary.


Condition in which errors occur	GPTRNS	pGPSEND	GPSEND
General-purpose communication clear to send flag is OFF.	(Note 2)	•	•
16 or more SEND, RECV, GPTRNS, pGPSEND, and pPMSET instructions are used simultaneously.	•	•	-
Communication error	•	•	•

(Note 2) Even when the same port is specified and the GPTRNS instruction is executed during the execution of the general-purpose communication transmission, an error does not occur and the result is not updated.

(Note 3) The data sending confirmation process indicates if the sending flag is cleared, if the send results flag is set, and if the processing results are stored in [D].

■ Creation of send data table [S]

- Data to be sent is stored from the low byte of a given area specified by [S].
- The figure below shows the case where the string "ABCDE" is converted with the SSET instruction.

(1)	Once the SSET instruction is executed, the number of characters is set in the starting word. Then, the characters that are converted are stored in the following area.
(2)	DT101 is set for operand [S] of the GPTRNS / pGPSEND / GPSEND instruction, and when the instruction is executed the data is sent in ascending order from the low byte.

9.3 Sending Operation

■ Setting the number of bytes in sent data [n]

Unit type	Set value	Description
SCU <small>(Note 1)(Note 2)</small>	1 to 4096	When the value is positive, an end code is automatically added according to the "Terminator setting" of COM settings.
	-1 to -4096	When the value is negative, an end code is not automatically added regardless of the "Terminator setting" of COM settings.
ET-LAN	1 to 16384	<ul style="list-style-type: none">When "Add no special header" is on (Default connection setting) <small>(Note 3)</small>Send data and the end code are not distinguished. It is not automatically added.
	1 to 16372	<ul style="list-style-type: none">When specifying "Append a special header" <small>(Note 3)</small>Send data and the end code are not distinguished. It is not automatically added.

(Note 1) For SCU, up to 4096 bytes can be sent, including a start code and an end code. The start code and end code are set from the configuration menu of the tool software or with the PMSET instruction.
When "Start code STX" is set to "Enabled", the maximum amount of sent data that can be specified is decremented by one.
When "Terminator setting" is set to "ETX" or "CR", the maximum amount of sent data is decremented by one.
When "Terminator setting" is set to "CR+LF", the maximum amount of sent data is decremented by two.
When "Terminator setting" is set to "Time", the maximum amount of sent data is not decremented.

(Note 2) For specifying a negative value for [n] (signed integer K), specify SS for the operation units.

(Note 3) A "special header" is added when communicating with a conventional FP2 ET-LAN unit, and when communication is performed with MEWTOCOL. Normally, select "Add no special header" in the user connection setting.

■ Operand [D] settings

- Specify the device area of the master unit storing the processing result (1 word).
- The following values are stored depending on the state.

Status	Value that is set
When starting the transmission request	H0
When transmission is completed	Number of transmitted bytes
When an error occurs	HFFF

■ Precautions for programming

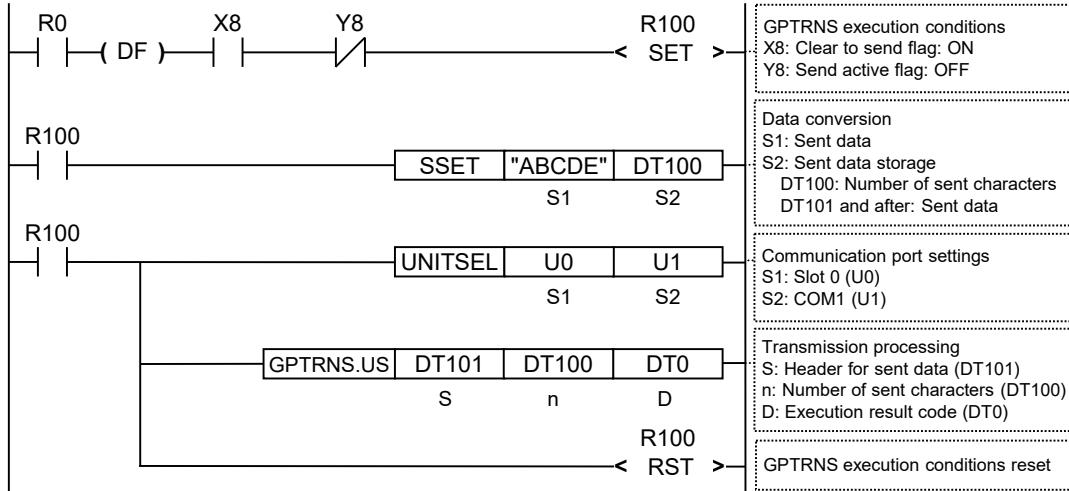
- To perform communication, setup is required in the configuration menu of the tool software.
- For a CPU unit with a built-in SCU, select **General-purpose communication** in **FP7 Configuration>Built-in SCU>Communication mode**. For a Serial Communication Unit, also select "General-purpose communication" in "Communication mode".
- For a CPU unit with a built-in ET-LAN, use the FPWIN GR7 tool software to select "General-purpose communication" in **FP7 Configuration>Built-in ET-LAN>User connection information setting>Operation mode setting**.
- Before executing the GPTRNS instruction, pGPSEND instruction, or GPSEND instruction, describe the UNITSEL instruction and specify the target unit and communication port or connection.

- The GPTRNS, pGPSEND, and GPSEND instructions should be executed after confirming that the general-purpose communication clear to send flag for the target COM port and connection is ON and that the general-purpose communication sending flag is OFF.
- For the GPSEND instruction, be sure to keep the execution condition ON until the completion of the transmission that sets the general-purpose communication sending flag to OFF.
- The general-purpose communication sent flag in the WX area is used for confirming the completion of the transmission using the general-purpose communication.
- When data is sent to a communication port that is undergoing transmission, it results in no operation. No error occurs.
- Sending zero-byte data results in an error.
- For a GPTRNS instruction and a pGPSEND instruction, up to 16 instructions can be executed simultaneously for different COM ports and connections. (The total of simultaneous usage of SEND, RECV, GPTRNS, pGPSEND, and pPMSET instructions)
- The GPTRNS, pGPSEND, and GPSEND instructions are not available in interrupt programs.

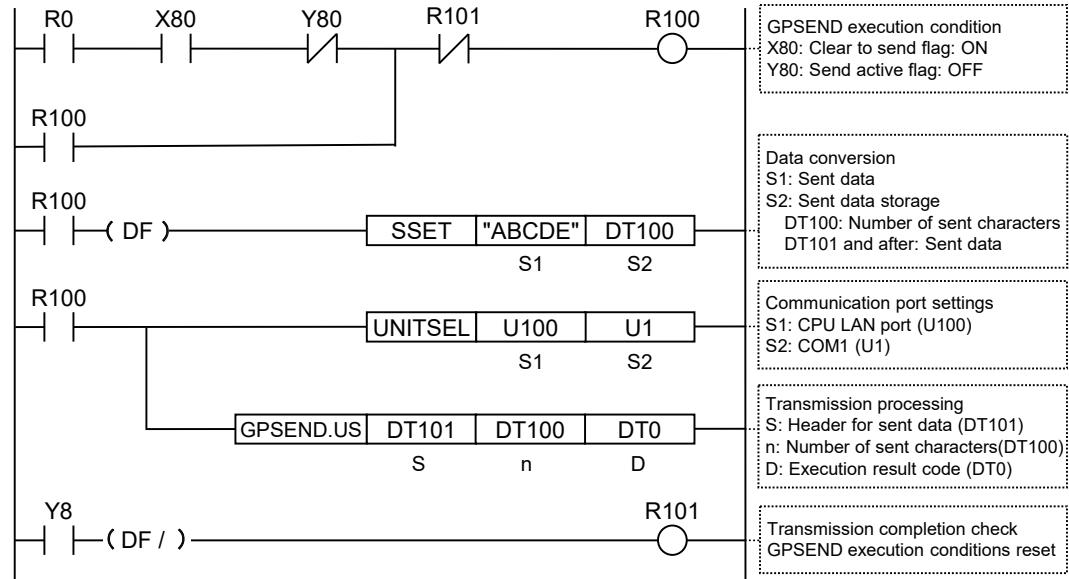
■ Precautions during programming (in the case of SCU)

- If a positive number is specified for [n], the start code and end code that are specified in the configuration menu are automatically added to the data to be sent. Do not include a start code or an end code in the sent data.
- If an end code will not be added, specify a negative number for the amount of sent data [n]. In addition, select "SS" as the operation units.
- The maximum volume of data that can be sent with GPTRNS, pGPSEND, and GPSEND instructions is 4,096 bytes, including a start code and an end code.

■ Precautions during programming (in the case of CPU with built-in ET-LAN)


- General-purpose communication can use user connections 1 to 16. It cannot be used for the system connection and the expansion user connections 17 to 216.
- User connections should be in the "connected" state. We recommend using the FPWIN GR7 tool software to set "Open automatically" in **Built-in ET-LAN>User connection information setting>Open type**. The connections can also be connected with the OPEN instruction.
- No header or terminator is added to data to be sent. Store the start code and end code as part of the send data if they need to be sent to match the external device protocol.
- The maximum volume of data that can be sent in a single instance with GPTRNS, pGPSEND, and GPSEND instructions is 16,384 bytes.

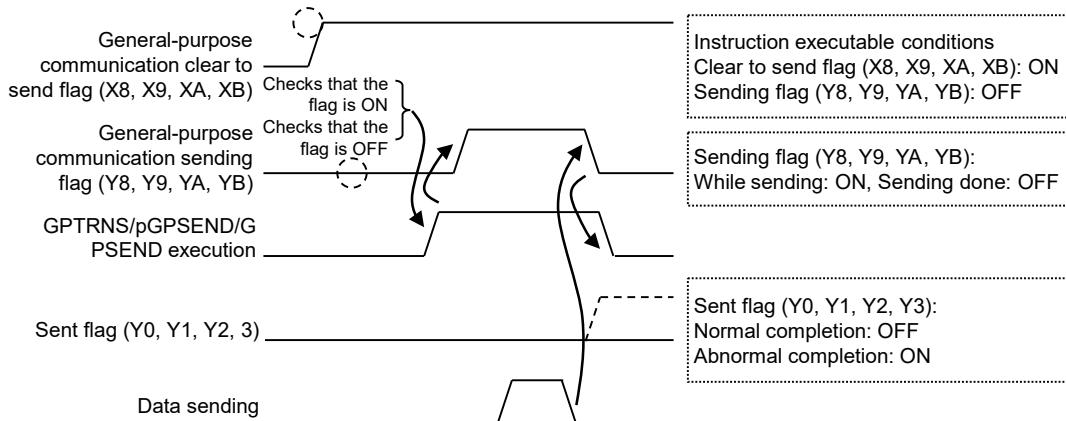
■ Sample program (in the case of SCU)


- This program checks that the general-purpose communication mode is on (X8:ON) and that general-purpose sending is not in progress in the same port (Y8:OFF), and then starts up the sending program.
- Using the SSET instruction, convert any given message into an ASCII string. Set the number of sent characters to the data register DT100, and the sent message to the data register DT101.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the GPTRNS / pGPSEND / GPSEND instruction, specify and execute the start of the table that stores the message to be sent (DT101) and the number of characters in the data (DT100).

9.3 Sending Operation

GPTRNS instruction

GPSEND instruction


Info.

- For the GPSEND instruction, it is necessary to turn ON the execution condition until the end of data sending, and turn OFF the execution condition at a scan in which the end of data sending is confirmed.

■ Time chart (in the case of SCU)

- Data are sent in ascending order from low bytes of [S+1] in the table specified by the GPTNS / pGPSEND / GPSEND instruction.
- During sending, the general-purpose communication sending flags (Y8, Y9, YA, YB) are turned ON. They turn OFF when sending is completed.

- The sending result (0: normal completion; 1: abnormal completion) is stored in the general-purpose communication sent flags (Y0, Y1, Y2, Y3).

■ I/O allocation (in the case of CPU with built-in SCU)

COM Port No.			Name	Description
1	2	0		
X8	X9	XA	General-purpose communication clear to send flag	Turns ON when the unit is set to the general-purpose communication mode.
Y8	Y9	YA	General-purpose communication sending flag	Turns ON when sending with general-purpose communication mode. Turns OFF when the sending process is completed.
Y0	Y1	Y2	Sent flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

(Note 2) In the case of the GPTRNS and pGPSEND instructions, the sending flag and send results flag are updated after the scan is complete.

(Note 3) In the case of the GPSEND instruction, the sending flag and send results flag are updated after sending is completed when the next GPSEND instruction is executed. If sending time is shorter than scan time, the general-purpose communication sending flags (Y8, Y9, YA, YB) are turned OFF when the GPSEND instruction is executed in the subsequent scan following completion of data sending. The flags remain ON for at least one scan time.

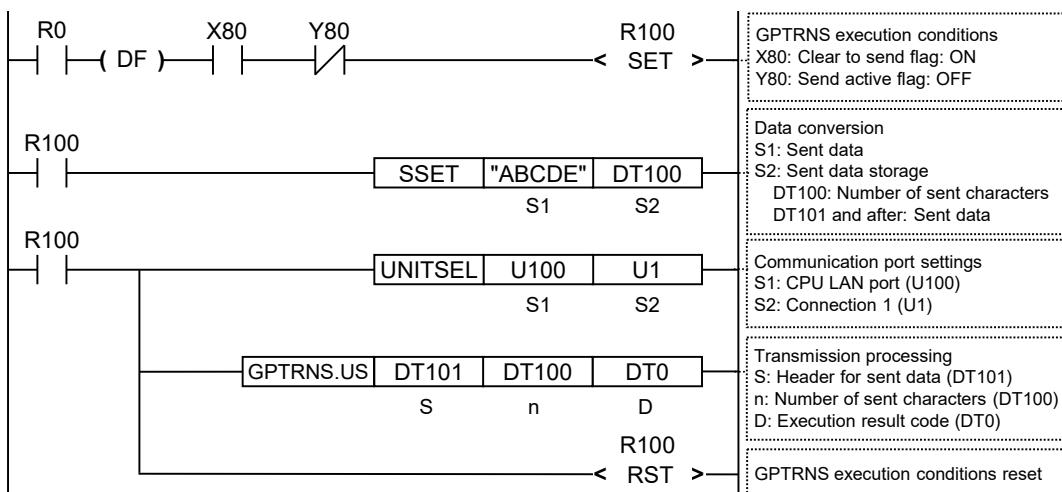
■ I/O allocation (in the case of Serial Communication Unit)

COM Port No.				Name	Description
1	2	3	4		
X8	X9	XA	XB	General-purpose communication clear to send flag	Turns ON when the unit is set to the general-purpose communication mode.
Y8	Y9	YA	YB	General-purpose communication sending flag	Turns ON when sending with general-purpose communication mode. Turns OFF when the sending process is completed.

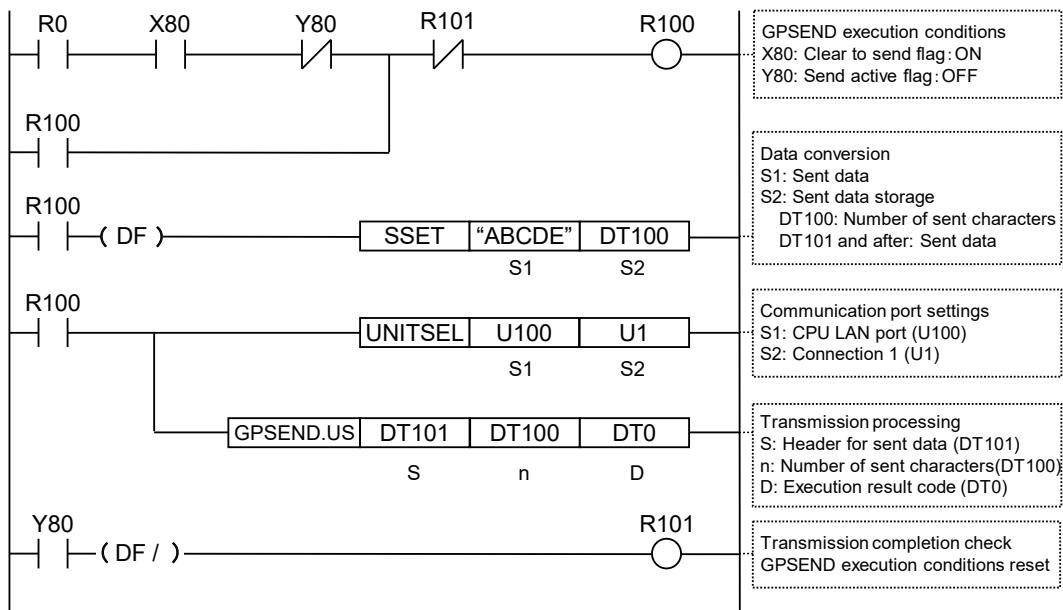
9.3 Sending Operation

COM Port No.				Name	Description
1	2	3	4		
Y0	Y1	Y2	Y3	Sent flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.


(Note 2) In the case of the GPTRNS and pGPSEND instructions, the sending flag and send results flag are updated after the scan is complete.

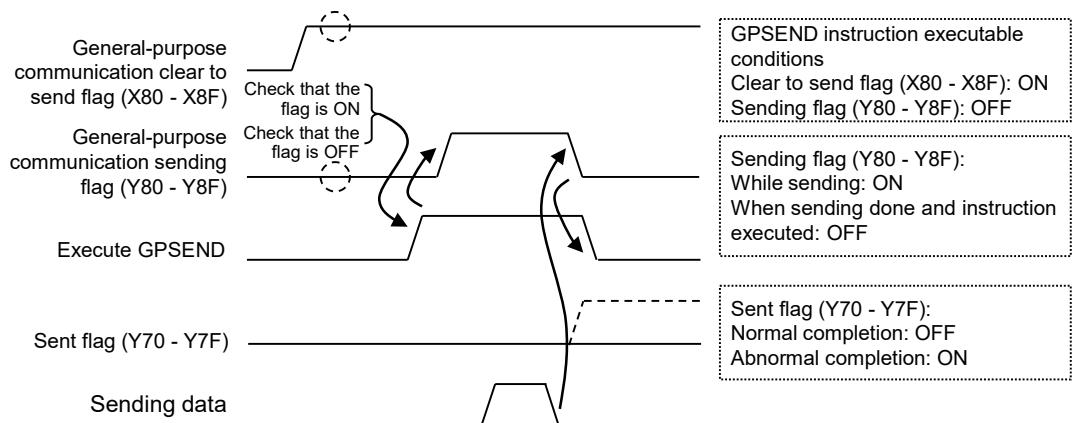
(Note 3) In the case of the GPSEND instruction, the sending flag and send results flag are updated after sending is completed when the next GPSEND instruction is executed. If sending time is shorter than scan time, the general-purpose communication sending flags (Y8, Y9, YA, YB) are turned OFF when the GPSEND instruction is executed in the subsequent scan following completion of data sending. The flags remain ON for at least one scan time.


■ Sample program (in the case of CPU with built-in ET-LAN)

- This program checks that Connection 1 is established in the general-purpose communication mode (X80:ON) and that general-purpose sending is not in progress in the same port (Y80:OFF), and then starts up the sending program.
- Using the SSET instruction, convert any given message into an ASCII string. Set the number of sent characters to the data register DT100, and the sent message to the data register DT101.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the GPTRNS / pGPSEND / GPSEND instruction, specify and execute the start of the table that stores the message to be sent (DT101) and the number of characters in the data (DT100).

GPTRNS instruction

GPSEND instruction



1 Info.

- For the GPSEND instruction, it is necessary to turn ON the execution condition until the end of data sending, and turn OFF the execution condition at a scan in which the end of data sending is confirmed.

■ Time chart (in the case of CPU with built-in ET-LAN)

- Data are sent in ascending order from low bytes of [S+1] in the table specified by the GPTRNS / pGPSEND / GPSEND instruction.
- During sending, the general-purpose communication sending flags that correspond to the connection (Y80 to Y8F) are turned ON. They turn OFF when sending is completed.
- The sending result (0: normal completion; 1: abnormal completion) is stored in the general-purpose communication sent flags (Y70 to Y7F).

9.3 Sending Operation

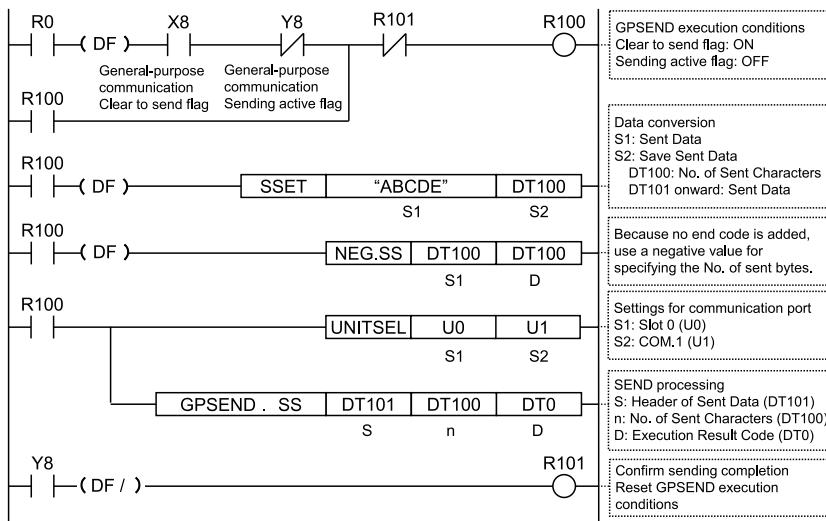
■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O number	Name	Description
X80 to X8F	General-purpose communication clear to send flag	Turns ON when general-purpose communication is in a connected status.
Y80 to Y8F	General-purpose communication sending flag	Turns ON when sending with general-purpose communication.
Y70 to Y7F	Sent flag	Reports completion result of sending data in general-purpose communication or master communication. (Normal completion: 0, Abnormal completion: 1)

(Note 1) Each contact is used for reading the operation state. Do not write over it with a user program.

(Note 2) In the case of the GPTRNS and pGPSEND instructions, the sending flag and send results flag are updated after the scan is complete.

(Note 3) In the case of the GPSEND instruction, the sending flag and send results flag are updated after sending is completed when the next GPSEND instruction is executed.


■ Flag operations

Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	The connection specified with UNITSEL is closed (other than "Connect").
	The communication mode of the communication port specified with UNITSEL is not "General-purpose communication."
	When the data device specified by [S] exceeds the area
	When the number of sent data specified by [n] is 0. The volume including a start code and an end code exceeds the specified maximum value.
	When the number of sent data specified by [n] exceeds the data area
	Either 0 or a negative value is set for [N] in the settings of sending to ET-LAN.
	Set when executed in an interrupt program.

9.3.4 Precautions on Sending Data

■ Procedures when the end code is not added in the sending process

When you do not wish to add the terminator (end code) in the sending process, use a negative value for specifying the No. of sent bytes.

(Note 1) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

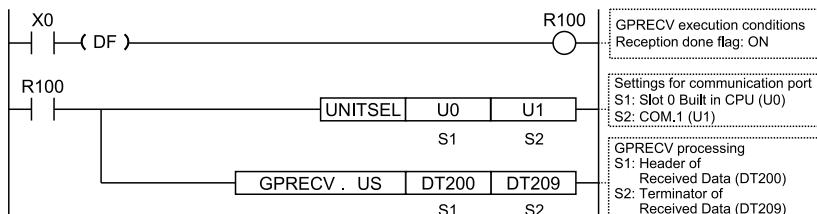
i Info.

- When you do not wish to add the terminator (end code), use a negative value for specifying the No. of sent data in GPSEND instruction. Select "SS" for operation unit.


9.4 Receiving Operation

9.4 Receiving Operation

9.4.1 Overview of Receiving Operation


■ Instructions

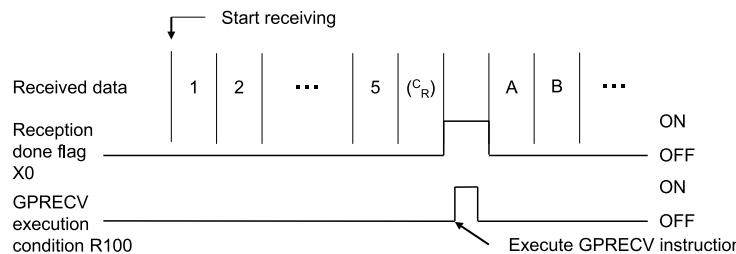
In the general-purpose communication mode, data received from the partner device are saved in eight reception buffers for each COM. port. When the GPRECV instruction is executed in a user program, data in the reception buffer can be copied into a given operation memory.

■ Sample program

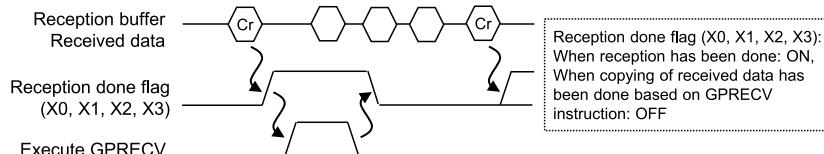
- When the reception done flag (X0) turns ON, the reception program is started up by the GPRECV instruction.
- In the UNITSEL instruction, specify the slot No. (U0) and the COM. port No. (U1).
- In the GPRECV instruction, specify and execute the header of the data table where the received message is saved (DT200) and the final address (DT209).

(Note 1) The unit number and COM. port number in the above program is applied when the COM.1 port of the CPU unit is used.

■ I/O allocation (CPU Unit)


COM. port no.			Name	Description
1	2	0		
X0	X1	X2	General-purpose communication Reception done flag	Turns ON when the receiving process is completed in the general-purpose communication mode.
X4	X5	X6	General-purpose communication Reception copy done flag	Turns ON when the GPRECV instruction is executed and the received data have been copied into the specified operation memory. Turns OFF when there are no applicable data.

■ I/O allocation (For Serial Communication Unit)


COM. port no.				Name	Description
1	2	3	4		
X0	X1	X2	X3	General-purpose communication Reception done flag	Turns ON when the receiving process is completed in the general-purpose communication mode.
X4	X5	X6	X7	General-purpose communication Reception copy done flag	Turns ON when the GPRECV instruction is executed and the received data have been copied into the specified operation memory. Turns OFF when there are no applicable data.

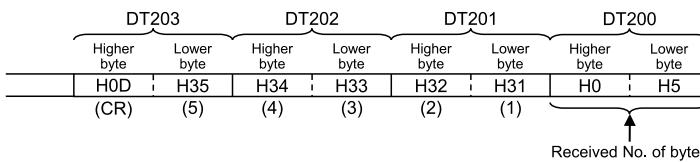
■ Timing chart

- Data received from an external device are saved in the same reception buffer.
- When the terminator (end code) is received, the “reception done” flag (X0, X1, X2, X3) turns on. Subsequently, the following data are saved in the buffer upon reception. 8 data can be received consecutively.

- When the GPRECV instruction is executed, data are copied into the specified area, and the reception done flag (X0, X1, X2, X3) turns OFF. The reception done flag (X0, X1, X2, X3) turns OFF when the I/O refresh is executed at the beginning of the subsequent scans.

■ Saving method for received data

When data are saved in a given data register from the reception buffer, based on GPRECV instruction, the data are saved in the following manner.


9.4 Receiving Operation

9.4.2 Contents of Received Data

When data are copied into a given data register, based on GPRECV instruction, the data are saved in the following manner.

Example: The data “12345 CR” is transmitted from a device with RS-232C device.

- At the beginning of the data register, the No. of received bytes is saved.
- The received data are saved in ascending order from lower bytes to higher bytes, starting with DT201.


i Info.

- The received data that are copied based on the GPRECV instruction do not include a start code or end code.
- It is also possible to receive binary data based on the GPRECV instruction. In this case, the terminator should be specified using "Time".

9.4.3 Precautions on Receiving Data

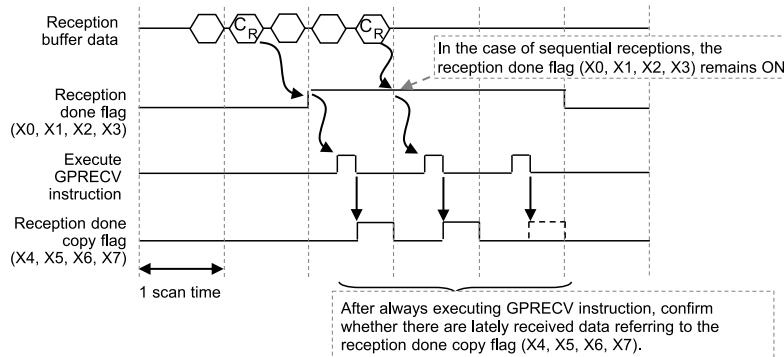
■ Reset communication ports

- If a communication abnormality has occurred, communication ports can be reset by turning on the "Request to reset" signal (Y10, Y11, Y12, Y13) by the user program.
- Once reset is completed, (X10, X11, X12, X13) turns ON. Subsequently, turn OFF the "Request to reset" (Y10, Y11, Y12, Y13).

■ Procedure for repeated reception of data

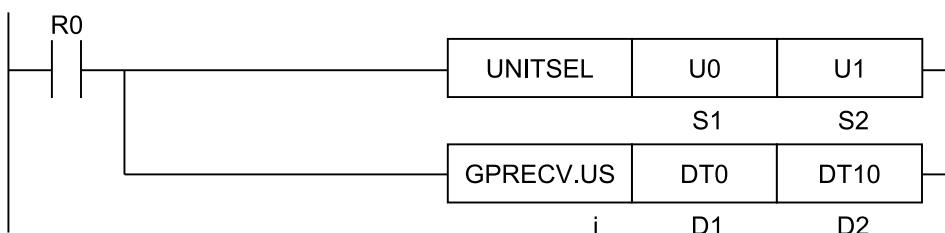
For repeated reception of data, perform the following steps 1 to 4:

1. Receive data.
2. Turn on the "General-purpose communication reception done" flag (X0, X1, X2, X3).
3. Specify a port to receive data based on the UNITSEL instruction.
4. Execute the GPRECV instruction and read the received data from the reception buffer.


9.4.4 Operations of the "Reception Done Copy" Flag and Multiplex Reception

■ Operation and function of the "reception done copy" flag (X4, X5, X6, X7)

- The "reception done copy" flag (X4, X5, X6, X7) turns ON when the GPRECV instruction is executed and data are copied from the reception buffer to the specified operation memory, and turns OFF when the END instruction is executed.


■ Processing in the case of multiplex reception

- If the time from the reception of data in the reception buffer to the subsequent data reception is shorter than the PLC scan time, and the receiving frequency is high, it is possible that the reception done flag (X0, X1, X2, X3) remains ON and cannot detect sequential receptions.
- In cases where it is necessary to process sequentially received data, constantly execute the GPRECV instruction, in combination with the "reception done copy" flag (X4, X5, X6, X7).
- Referring to the "reception done copy" flag (X4, X5, X6, X7), you can confirm whether there are lately received data.

9.4.5 GPRECV (General-Purpose Communication Receive Instruction)

■ Ladder diagram

(Note 1) The above figure shows the case that S1=U0 (CPU unit with built-in SCU) and S2=U1 (port number 1) are specified by the UNITSEL instruction.

9.4 Receiving Operation

■ Available operation units (●: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		●	●				

■ List of operands

Operand	Description
D1	Starting address of the received data storage data area
D2	Ending address of the received data storage data area

■ Available devices (●: Available)

Operan d	16-Bit device:												32-Bit device:		Integer			Real numbe r	St rin g	Index modifie r
	W X	W Y	W R	W L	W S	S D	D T	L D	U M	W I	W O	TS C S	TE C E	IX	K	U	H	SF	D F	" "
D1 ^(Note 1)	●	●	●	●			●	●												●
D2 ^(Note 1)	●	●	●	●			●	●												●

(Note 1) Always 16-bit data/device, regardless of the specification of operation units [i].

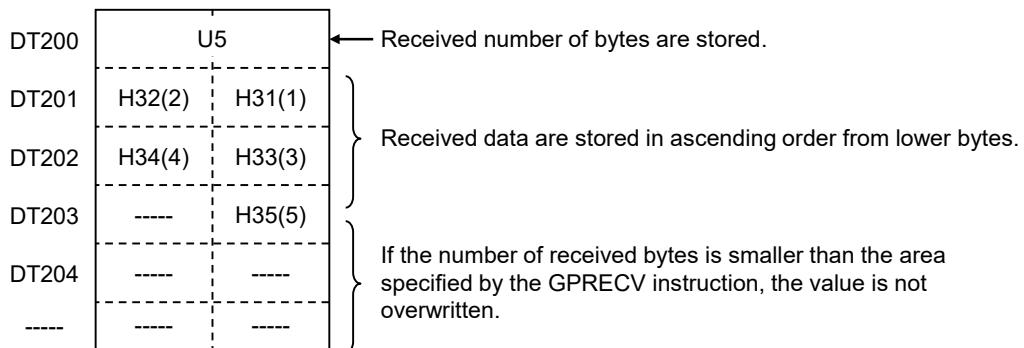
■ Outline of operation

- This instruction reads data that is sent from an external device and received by the communication port of the unit.
- This instruction reads received data from the communication unit and the communication port set by the UNITSEL instruction, and stores the number of received bytes in the area specified by [D1] and the received data in the areas [D1+1] to [D2].
- In the case of SCU, data received from the partner are stored in 8 receive buffers for each COM port. By executing the GPRECV instruction, data in the receive buffer can be copied to a given operation memory.
- In the case of CPU with built-in ET-LAN, data received from the partner are stored in 1 receive buffer for each connection. By executing the GPRECV instruction, data in the receive buffer can be copied to a given operation memory.

■ Amount of received data and end code

Items	SCU	In the case of CPU with built-in ET-LAN
Number of received data	0 to 4096 ^(Note 1)	0 to 16384
End code identification	Yes (according to the SCU communication settings (end settings))	No identification

(Note 1) For SCU, up to 4096 bytes can be sent, including a start code and an end code. The start code and end code are set from the configuration menu of the tool software or with the PMSET instruction.

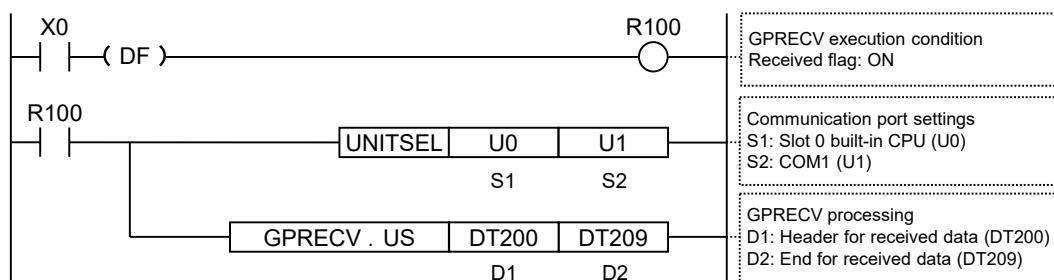

When "Start code STX" is set to "Enabled", the maximum amount of sent data that can be specified is decremented by one.

When "Terminator setting" is set to "ETX" or "CR", the maximum amount of sent data is decremented by one.

When "Terminator setting" is set to "CR+LF", the maximum amount of sent data is decremented by two.

When "Terminator setting" is set to "Time", the maximum amount of sent data is not decremented.

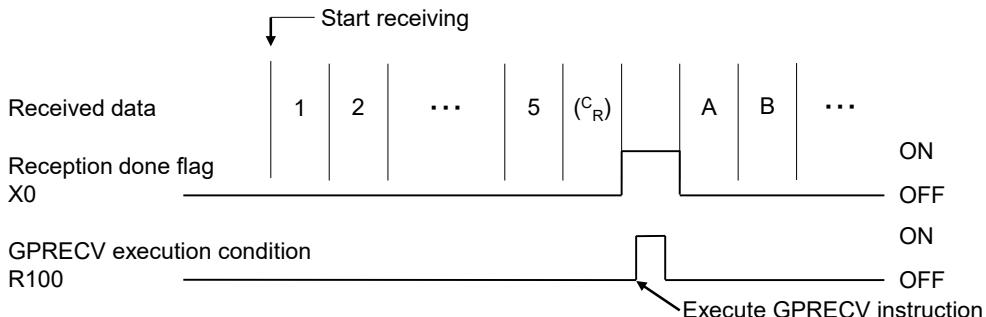
■ Storage method for received data

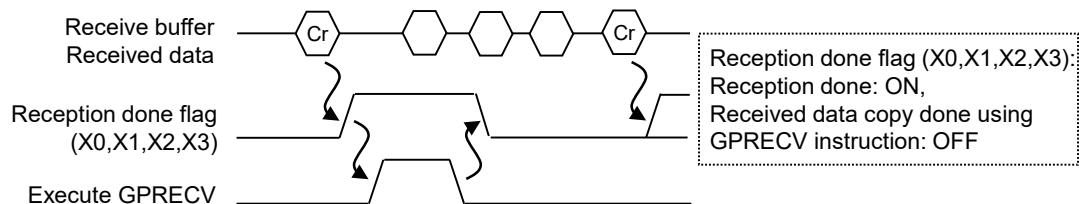


■ Info.

- The case of SCU shows the case that it is used in the following combination.
 - COM.0 port equipped in the CPU unit
 - Communication cassettes attached to the CPU unit (COM.1 to COM.2 ports)
 - Communication cassettes attached to the serial communication unit (COM.1 to COM.4 ports)
- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN.

■ Sample program (in the case of SCU)


- When the received flag (X0) turns ON, the reception program is started up by the GPRECV instruction.
- Using the UNITSEL instruction, specify the slot number (U0) and the COM. port number (U1).
- In the GPRECV instruction, specify and execute the start of the data table that stores the received message (DT200) and the final address (DT209).


9.4 Receiving Operation

■ Time chart (in the case of SCU)

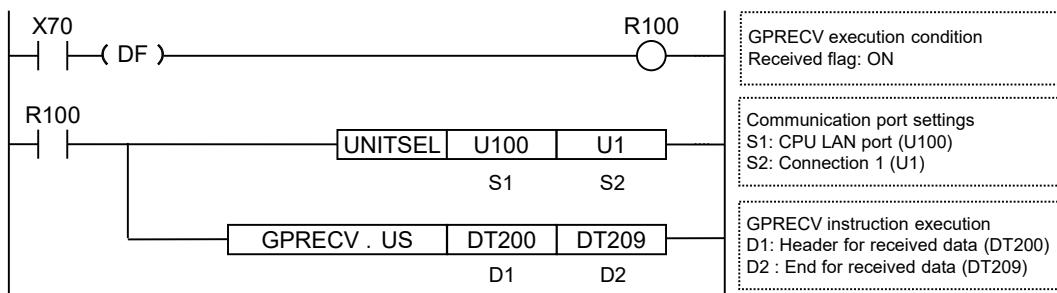
- Data received from an external device are stored in the receive buffer.
- When the end code is received, the received flag (X0, X1, X2, X3) turns ON. Subsequently, the following data are stored in the buffers upon reception. Data for 8 buffers can be received consecutively.

- When the GPRECV instruction is executed, data are copied to the specified area, and the received flags (X0, X1, X2, X3) are turned OFF. The received flags (X0, X1, X2, X3) are turned OFF when I/O refresh is executed at the start of the following scans.

■ I/O allocation (in the case of CPU with built-in SCU)

COM Port No.			Name	Description
1	2	0		
X0	X1	X2	General-purpose communication received flag	Turns ON when the receiving process is completed in the general-purpose communication mode.
X4	X5	X6	General-purpose communication received data copied flag	Turns ON when the GPRECV instruction is executed and the received data have been copied into the specified operation memory. Turns OFF when there are no applicable data.

■ I/O allocation (in the case of Serial Communication Unit)


COM Port No.				Name	Description
1	2	3	4		
X0	X1	X2	X3	General-purpose communication received flag	Turns ON when the receiving process is completed in the general-purpose communication mode.
X4	X5	X6	X7	General-purpose communication received data copied flag	Turns ON when the GPRECV instruction is executed and the received data have been copied into the specified operation memory. Turns OFF when there are no applicable data.

■ Precautions during programming (in the case of SCU)

- Use the UNITSEL instruction immediately before the GPRECV instruction to specify a target port for communication.
- When the general-purpose communication received flag is ON for the targeted COM port, execute GPRECV.
- When multiplex reception is in progress, the received flag remains ON after the received data have been copied using the GPRECV instruction. The received data cannot be copied at the leading edge of the reception done signal.
- The received data copied by the GPRECV instruction do not include a start code or an end code.
- It is also possible to receive binary data using the GPRECV instruction. In this case, "time" should be used for the end setting.
- The received data or the received data amount do not include the end code. (It is stripped off.)
- In the case of SCU which has eight 4096-byte buffers inside, data equivalent to the eight buffers can be received consecutively.
- If the reception of the ninth datum of data is performed by SCU before the GPRECV instruction is executed to take out data from SCU's receive buffer, a buffer FULL error occurs in SCU, and the ninth datum is discarded.
- If the GPRECV instruction is executed when the receive buffer FULL error is on, the oldest received datum is taken out, and the receive buffer FULL error is canceled.
- When no data have been received, the general-purpose communication control flag (received copy flag) turns OFF.
- After data have been received, and copy to the operation memory of the CPU unit has been completed, the general-purpose communication control flag (received data copied flag) turns ON.
- In the case of a direct address and an index modification address, specify the same device for D1 and D2. At the same time, specify the addresses so that D1 is less than D2.

■ Sample program (in the case of CPU with built-in ET-LAN)

- When the received flag (X70) of Connection 1 turns ON, the reception program is started up by the GPRECV instruction.
- The UNITSEL instruction is used to specify a slot number (LAN port: U100) and the connection number (U1).
- In the GPRECV instruction, specify and execute the start of the data table that stores the received message (DT200) and the final address (DT209).



■ Time chart (in the case of CPU with built-in ET-LAN)

- Data received from an external device are stored in the receive buffer for each connection.

9.4 Receiving Operation

- When data are received, the received flag (X70 to X7F) turns ON.
- When the GPRECV instruction is executed, data are copied to the specified area, and the received flags (X70 to X7F) are turned OFF. The received flags (X70 to X7F) are turned OFF when I/O refresh is executed at the start of the following scans.

■ I/O allocation (in the case of CPU with built-in ET-LAN)

I/O allocations	Name	Description
X70 to X7F	General-purpose communication received flag	Turns ON when receiving is completed in the general-purpose communication mode.

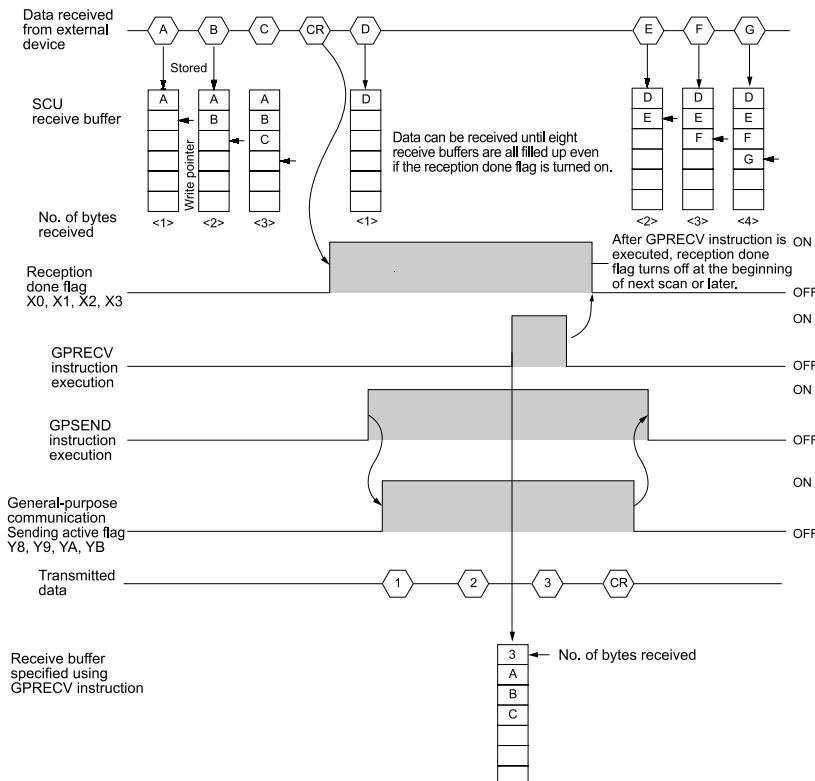
■ Precautions during programming (in the case of CPU with built-in ET-LAN)

- Use the UNITSEL instruction immediately before the GPRECV instruction to specify a target connection for communication.
- When the general-purpose communication received flag is ON for the targeted connection, execute GPRECV.
- The maximum volume of data that can be received in one session using the GPRECV instruction, from the LAN port of the FP7 CPU unit, is 16,384 bytes.
- Depending on the communication format of an external device, if a header and a terminator are contained, they are stored in the operation memory as part of receive data. When necessary, insert a program to extract data content.
- In the case of a direct address and an index modification address, specify the same device for D1 and D2. At the same time, specify the addresses so that D1 is less than D2.

Info.

- As the communication cassette (Ethernet type) has an Ethernet-serial conversion function, the internal interface operates with similar programs as the case of SCU. The setting method and programming method are different from those for the CPU with built-in ET-LAN. Refer to the section describing the case of SCU.

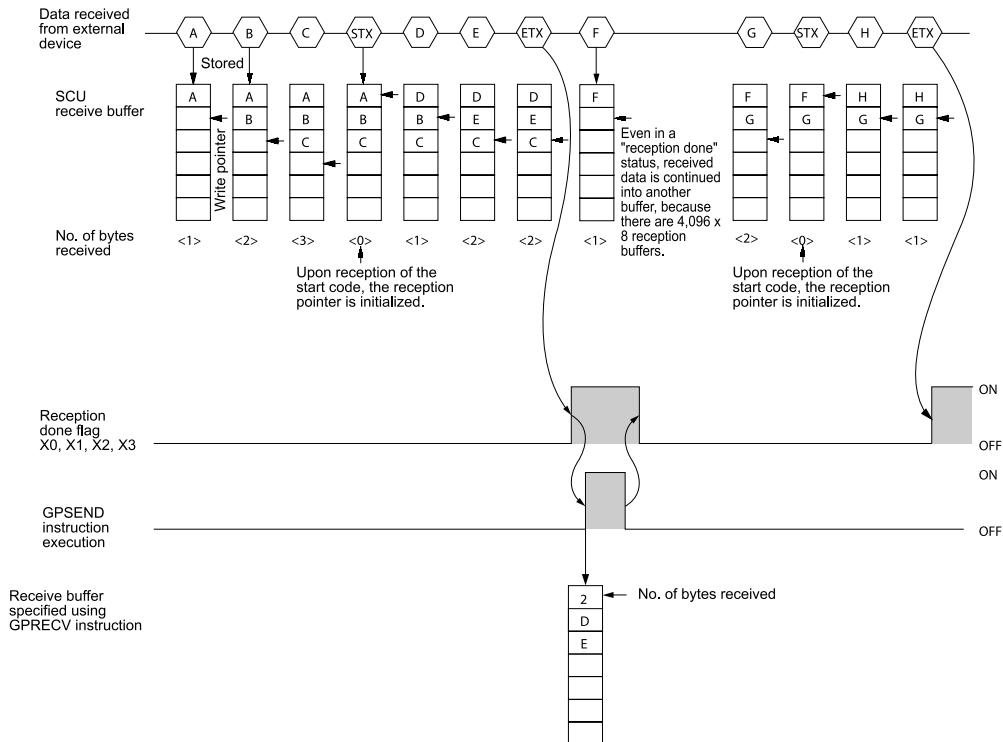
■ Flag operations


Name	Description
SR7 SR8 (ER)	To be set in the case of out-of-range in indirect access (index modification).
	To be set when the destination range is outside the accessible range.
	An SCU or ET-LAN unit does not exist in the slot specified by UNITSEL.
	The communication mode of the communication port specified with UNITSEL is not "General-purpose communication".
	The COM port specified by UNITSEL does not exist.

Name	Description
	Connection specified by UNITSEL is in a "reception done OFF" status, but not in a "connected" status.
	Data device specified by [D1] and/or [D2] exceeds the area.
	The specified [D1] is greater than or equal to [D2].
	The devices specified for [D1] and [D2] differ.

9.5 Sending/Receiving Flag Operation

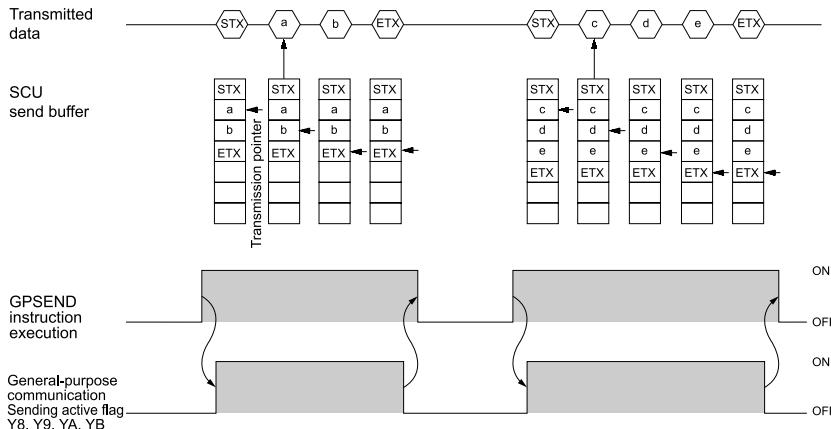
9.5.1 No Header (Start Code), Terminator (End Code) "CR":


The “reception done” flag, the “sending active” flag, the GPSEND instruction, and the GPRECV instruction are related as follows:

- The COM. port has eight reception buffers. The reception process is continued after the reception done flag (X0, X1, X2, X3) turns ON. The reception done flag (X0, X1, X2, X3) does not turn OFF immediately following the execution of GPRECV instruction. It will be turned off at the beginning of the next scan or later.
- After GPSEND instruction is executed, data transmission is started in several μ s to several tens of ms. For time before transmission is started, please refer to the communication cycle time (SM208-SM210) using the system monitor function.
- After GPSEND instruction is executed, dual sending to the same port is not possible until the “sending General-purpose communication Sending active flag” (Y8, Y9, YA, YB) turns OFF. The “General-purpose communication Sending active flag” (Y8, Y9, YA, YB) turns OFF in instruction execution in the next scan or later following completion of data sending.

9.5.2 Start Code "STX", End Code "ETX":

Receiving process: Reception done flag and GPRECV instruction are related as follows:


- When the start code is set to "STX", the data are saved in the reception buffer. When the start code is received, the receive pointer is initialized. If there are two headers, data following the second header overwrites the data in the reception buffer.
- The COM. port has eight reception buffers. The reception process is continued after the reception done flag (X0, X1, X2, X3) turns ON. The reception done flag (X0, X1, X2, X3) does not turn OFF immediately following the execution of GPRECV instruction. It will be turned off at the beginning of the next scan or later.
- If there are no received data following execution of GPRECV instruction, the reception done copy flag (X4, X5, X6, X7) turns OFF.

Info.

- The data without the Code STX at the reception is saved in the reception buffer, and the "reception done" flag turns on when the end code is received.
- However, if the code STX is added in the middle of the data, the data are saved from the beginning of the reception buffer.

9.5 Sending/Receiving Flag Operation

Sending process: Sending done flag and GPSEND instruction are related as follows:

- Header (STX) and terminator (ETX) are automatically added to the data to be sent. The data are transmitted to an external device.
- After GPSEND instruction is executed, data transmission is started in several μ s to several tens of ms. For time before transmission is started, please refer to the communication cycle time (SM208-SM210) using the system monitor function.
- After GPSEND instruction is executed, dual sending to the same port is not possible until the "sending general-purpose communication flag" (Y8, Y9, YA, YB) turns OFF.
- The "General-purpose communication Sending active flag" (Y8, Y9, YA, YB) turns OFF in GPSEND instruction execution in the next scan or later following completion of data sending to an external device. The "General-purpose communication Sending active flag" (Y8, Y9, YA, YB) always remains on for at least 1 scan time.

10 Troubleshooting

10.1	Self-diagnostic Function.....	10-2
10.1.1	CPU Unit's Operation Monitor LED.....	10-2
10.1.2	Operation at the Time of Error	10-2
10.1.3	Serial Communication Unit's Operation Monitor LED	10-3
10.2	What to Do If an Error Occurs (For Each Communication Mode).....	10-4
10.2.1	When Using PLC Link Function	10-4
10.2.2	When Using MEWTOCOL/ MEWTOCOL7/ MODBUS RTU Function	10-4
10.2.3	When Using General-purpose Communication Function.....	10-5
10.3	Checking Status with PMGET Instruction	10-7
10.3.1	Specifications of PMGET Instruction	10-7
10.3.2	List of Communication Parameters	10-7
10.4	Clearing Errors Using User Programs	10-10
10.4.1	Clearing Errors Using User Programs	10-10

10.1 Self-diagnostic Function

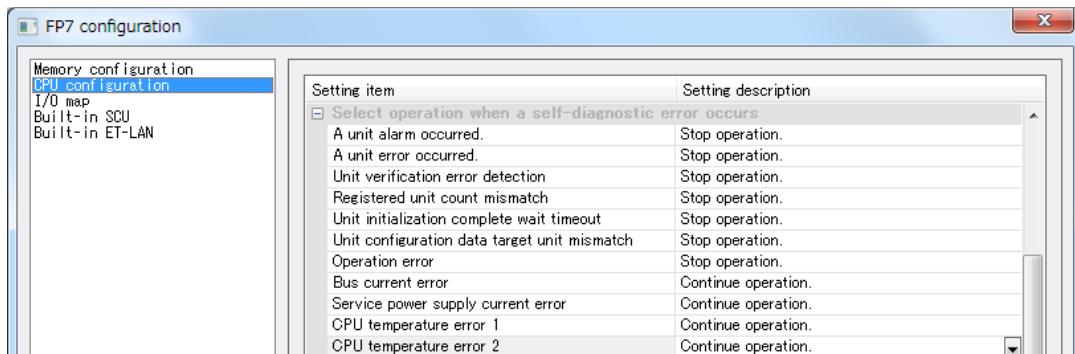
10.1 Self-diagnostic Function

10.1.1 CPU Unit's Operation Monitor LED

The CPU unit has a self-diagnostic function which identifies errors and stops operation if necessary. Indications concerning self-diagnosis are as follows.

■ LED indications concerning self-diagnostic errors

	LED indications on the CPU unit				Description	Operation status
	RUN Green	PROG Green	ERROR Red	ALARM Red		
Normal operation	●	○	○	○	Normal operation	Operation
	○	●	○	○	PROG. mode	Stop
	▲	○	○	○	Forcing input/output in RUN mode	Operation
Error	●	○	▲	○	When a self-diagnostic error occurs (Operation)	Operation
	○	●	▲	○	When a self-diagnostic error occurs (Stop)	Stop
	○	●	-	●	System watchdog timer has been activated	Stop
	○	▲	-	○	Waiting for connection of the PHLS slave	Stop


(Note 1) ●: ON, ▲: Flashing, ○: OFF, -: Varies (ON or OFF)

10.1.2 Operation at the Time of Error

Normally, when an error occurs, the operation stops.

■ Configuration menu of FPWIN GR7

Operation mode of the CPU unit at the time of error can be set ("Continue or Stop") in the **FP7 Configuration** menu of the tool software FPWIN GR7.

i Info.

- For information on the troubleshooting for the CPU unit, also refer to *FP7 CPU Unit User's Manual (Hardware)*.

10.1.3 Serial Communication Unit's Operation Monitor LED

The serial communication unit has a self-diagnostic function which identifies errors. Indications concerning self-diagnosis are as follows.

■ LED indications concerning self-diagnostic errors

LED indication	Status	Status	Countermeasures
ERROR	ON	Parameter setting error or transmission/reception error occurs.	Refer to "10.2 What to Do If an Error Occurs (For Each Communication Mode)".
	Flashing (Flashing cycle: 100 ms)	The factory acceptance test switch is ON.	Turn OFF the factory acceptance test switch on the side of the unit.
	Flashing (Flashing cycle: 500 ms)	A cassette that cannot be combined is attached.	Confirm the type of the cassette, and replace it.
ALARM	ON	Hardware error occurs.	Please contact your dealer.

■ CPU operation when an error occurs in Serial Communication Unit

- If an alarm or error occurs in the serial communication unit, the CPU unit will stop the operation. The operation can be changed to "Continue" using the **CPU configuration**.
- In the programming tool, a message of "Unit alarm (80)" or "Unit error (81)" can be confirmed on the "status display" dialog box.

i Info.

- Even if a communication error occurs, the ERROR LED of the serial communication unit will turn off once communication is completed normally with other COM. ports. For confirming error contents, execute PMGET instruction and confirm communication parameters or monitor information.

10.2 What to Do If an Error Occurs (For Each Communication Mode)

10.2 What to Do If an Error Occurs (For Each Communication Mode)

10.2.1 When Using PLC Link Function

■ What to do if an error occurs

Situation	Contents to check	Confirmation method
Communication is not possible. (For the serial communication unit, the ERROR LED turns on.)	Is a communication cassette attached?	Check if the communication block is installed firmly.
	Are wiring correct?	Check the wiring again.
	Isn't there any problem in environments such as noise?	Check the shielding.
	Is the unit number of each unit set correctly? <ul style="list-style-type: none">Are the unit numbers set sequentially and consecutively from 1?Isn't there any overlapping unit number?Isn't any number over 17 used for unit number with PMSET instruction?	<ul style="list-style-type: none">Check the configuration (COM.1 settings) of the CPU with built-in SCU unit or the serial communication unit.Check the communication parameters with PMGET instruction. (Note 1)
	Isn't there any overlapping transmission area for each unit?	
	Is the transmission/reception area of PLC link correct?	
	Is the maximum unit number used for the PLC link correct?	
	Is the communication mode set correctly?	

(Note 1) For checking communication parameters with PMGET instruction, the CPU should be set in the RUN mode. Set **Mode selection when self-diagnostic error occurs** > **A unit error occurred** to "Continue operation" in the **CPU configuration** menu.

10.2.2 When Using MEWTOCOL/ MEWTOCOL7/ MODBUS RTU Function

■ What to do if an error occurs

Situation	Contents to check	Confirmation method
Communication is not possible. (For the serial communication unit, the ERROR LED turns on.)	Is a communication cassette attached?	Check if the communication block is installed firmly.
	Are wiring correct?	Check the wiring again.
	Isn't there any problem in environments such as noise?	Check the shielding.
	Is the communication mode set correctly?	<ul style="list-style-type: none">Check the configuration (COM. settings) of the CPU with built-in SCU or the serial communication unit.Check the communication parameters with PMGET instruction. (Note 1)
Communication is not possible when SD/ RDLED of communication cassette is flashing.	Are communication condition settings correct?	
	Are unit numbers set correctly?	
	Is the communication mode set correctly?	

10.2 What to Do If an Error Occurs (For Each Communication Mode)

Situation	Contents to check	Confirmation method
	Is the communication mode set to the same mode as that of a destination device?	
	Is the command length for MEWTOCOL or MEWTOCOL7 within the prescribed length?	Check the programs of destination devices.

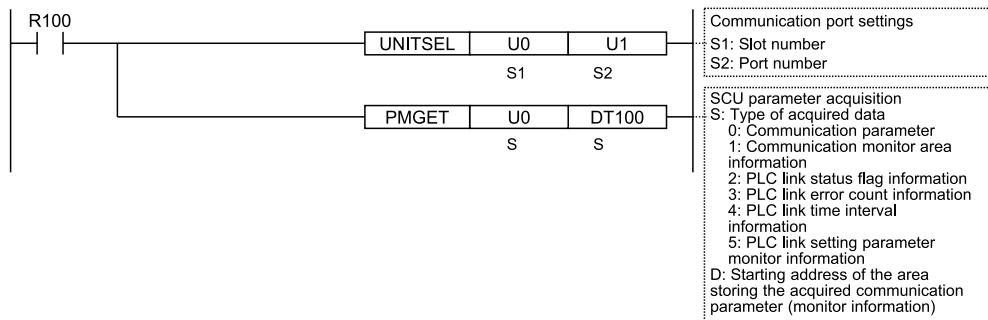
(Note 1) For checking communication parameters with PMGET instruction, the CPU should be set in the RUN mode. Set **Mode selection when self-diagnostic error occurs**>**A unit error occurred** to "Continue operation" in the **CPU configuration** menu.

10.2.3 When Using General-purpose Communication Function

■ What to do if an error occurs

Situation	Contents to check	Confirmation method
Communication is not possible. (For the serial communication unit, the ERROR LED turns on.)	<p>Is a communication cassette attached?</p> <p>Are wiring correct?</p> <p>Isn't there any problem in environments such as noise?</p> <p>Is the communication mode set correctly?</p>	<p>Check if the communication block is installed firmly.</p> <p>Check the wiring again.</p> <p>Check the shielding.</p> <ul style="list-style-type: none"> Check the configuration (COM. settings) of the CPU with built-in SCU or the serial communication unit. Check the communication parameters with PMGET instruction. (Note 1)
Transmission is not possible. (For the serial communication unit, the ERROR LED turns on.)	Does an operation error occur when GPSEND instruction is executed?	Review the program.
Transmission is not possible.	<p>Isn't transmission prohibited by CTS signal (Y14 or Y16) when using a communication cassette with RS-232C (5-wire type)?</p> <p>Is the setting for the communication conditions the same as the one for the device communicated?</p> <p>Is the setting of the method for detecting "reception done" the same as the one for the device communicated?</p>	<ul style="list-style-type: none"> Check the configuration (COM. settings) of the CPU with built-in SCU or the serial communication unit. Check the communication parameters with PMGET instruction. (Note 1)
Reception is not possible. (For the serial communication unit, the ERROR LED turns on.)	<p>Isn't reception error occurring?</p> <p>Isn't the reception buffer FULL error occurring? If the error occurs, the operation cannot be restarted without performing channel reset.</p> <p>Isn't the operation mode set to a mode other than general-purpose communication with PMSET instruction? (Note 2)</p>	<p>Check the communication parameters and operation status monitor information with PMGET instruction. (Note 1)</p>

10.2 What to Do If an Error Occurs (For Each Communication Mode)


- (Note 1) For checking communication parameters with PMGET instruction, the CPU should be set in the RUN mode. Set **Mode selection when self-diagnostic error occurs>A unit error occurred.** to "Continue operation" in the **CPU configuration**.
- (Note 2) When the power is turned off, the settings changed with the PMSET instruction are not retained and are restored to the settings configured with FPWIN GR7.

10.3 Checking Status with PMGET Instruction

10.3.1 Specifications of PMGET Instruction

■ Confirmation of error information

- Describe UNITSEL instruction immediately before PMGET instruction, and specify the slot and port numbers of the unit to be read.
- Specify the type of data to be read (parameter or monitor information) for operand S1 of PMGET instruction.
- Store 26 words for communication parameters or 7 words for monitor information in the area starting with the area specified by operand S2 of PMGET instruction.

10.3.2 List of Communication Parameters

■ Acquisition of SCU communication parameters

Operand	Parameter	Range	Settings
[D]	Communication mode	U0 U1 U2 U8 U9	U0: MEWTOCOL-COM U1: MEWTOCOL7-COM U2: MODBUS RTU U8: General-purpose communication U9: PLC Link
[D+1]	Unit number setting	U1 to U999	Unit number U1 to U999 MEWTOCOL-COM: U1 to U99 MEWTOCOL7-COM: U1 to U999 MODBUS-RTU: U1 to U247 PLC link: U1 to U16 (Default: 0)
[D+2]	Baud rate setting	U0 to U10	U0: 300, U1: 600, U2: 1200, U3: 2400, U4: 4800, U5: 9600, U6: 19200, U7: 38400, U8: 57600, U9: 115200, U10: 230400 bps
[D+3]	Data length setting	U0 to U1	U0: 7-bit length, U1: 8-bit length
[D+4]	Parity setting	U0 to U2	U0: No parity, U1: Odd parity, U2: Even parity
[D+5]	Stop bit length setting	U0 to U1	U0: 1 bit, U1: 2 bits

10.3 Checking Status with PMGET Instruction

Operand	Parameter	Range	Settings
[D+6]	RS/CS ^(Note 1)	U0 to U1	U0: Disable, U1: Enable
[D+7]	Send waiting time	U0 to U10000	U0: Immediate Effective time = Un × 0.01 ms (0 to 100 ms)
[D+8]	Header STX	U0 to U1	U0: Disable, U1: Enable
[D+9]	Terminator setting	U0 to U3	U0: cR, U1: cR+Lf, U2: Time, U3: ETX
[D+10]	Terminator judgment time	U0 to U10000	U0: For 32 bits Effective time = Un × 0.01 ms (Effective only when the terminator setting is Time)
[D+11]	Modem initialization	U0 to U2	U0: Not initialize U1: Execute the first initialization only ^(Note 2) U2: Re-execute initialization at the time of setting.
[D+12]	Reserved area	U0	Reserved area
[D+13]	Reserved area	U0	Reserved area
[D+14]	Link area block number	U0 to U1	Block number of link relay/link register area
[D+15]	PLC Link MEWNET-W0 Max. unit No.	U2 to U16	Values outside the range are treated as 16.
[D+16]	Link relay range	U0 to U64	Specification of range of link relays used for communication (Relative values in a specified block)
[D+17]	Link register range	U0 to U128	Specification of range of link registers used for communication (Relative values in a specified block)
[D+18]	Starting no. for link relay send area	U0 to U63	Starting number for link relay transmission (Specified number of words, Relative values in a specified block)
[D+19]	Size of link relay send area	U0 to U64	Link relay transmission size (Specified number of words)
[D+20]	Starting No. for link register send area	U0 to U127	Starting number for link register transmission (Specified number of words, Relative values in a specified block)
[D+21]	Size of link register send area	U0 to U127	Link register transmission size (Specified number of words)
[D+22]	Reserved area	U0	Reserved area
[D+23]	Reserved area	U0	Reserved area
[D+24]	Reserved area	U0	Reserved area
[D+25]	Reserved area	U0	Reserved area

(Note 1) RS/CS is selectable only when using an RS-232C cassette (1-ch, 5-wire type).

(Note 2) The modem is initialized at the time of setting (when the power turns on, PMGET instruction is executed, or when switching to the RUN mode). However, only the first initialization is executed (except the time of repower-on).

(Note 3) The settings of [D+14] to [D+21] are available only when the communication mode for the COM.1 port is PLC link.

■ SCU COM. port operation status monitor information

Operand	Monitor information	Range	Settings
[D]	Operation mode	U0 U1 U2 U8 U9	U0: MEWTOCOL-COM U1: MEWTOCOL7-COM U2: MODBUS RTU U8: General-purpose communication U9: PLC link
[D+1]	Communication cassette detection	U0 U232 U422 U485	U0: No communication cassette U 232: RS-232C U 422: RS-422 U 485: RS-485
[D+2]	Reception error code		bit9: Receive buffer FULL (Note 1) bit8: Receive buffer overflow (Note 2) bit2: Parity mismatch (Note 3) bit1: Stop bit not detected (framing error) (Note 3) bit0: Receive buffer overrun (Note 4)
[D+3]	No. of occurrences of reception error		Number of detection of reception errors stored in the low byte of reception error code (Unsigned 16-bit cycle)
[D+4]	Setting error code		bit9: Number of transmission data error bit8: Communication parameter setting error bit0: Mode setting/change error (A mode number that cannot be set or changed is specified.)
[D+5]	Error parameter No.	U1 to U12	Parameter number for which data outside the range is specified (Effective only when the communication parameter setting error occurs.)
[D+6]	Modem initialization status	H0000 H0100 H0200 H02FF	No operation During initialization Initialization completed Initialization failed

(Note 1) When a command is received in a state where there is no open space in the internal reception buffer, a reception buffer FULL error occurs.

Take the following countermeasures:

- Shorten the execution period of the General-Purpose Communication Receive Instruction.
- Lengthen the communication send period from the partner device.

(Note 2) It occurs when a command that exceeds 4096 bytes is received. Check the length of the command that is sent from the partner device.

(Note 3) It occurs when the parity setting or stop bit setting is different from the setting on the partner device. It may also occur when communication data signal is disturbed by noise, etc.

(Note 4) It occurs when the received characters were overwritten because internal receive processing was not completed in time.

Take the following countermeasures:

- Lower the baud rate.
- Shorten the execution period of the General-Purpose Communication Receive Instruction.
- Lengthen the communication send period from the partner device.

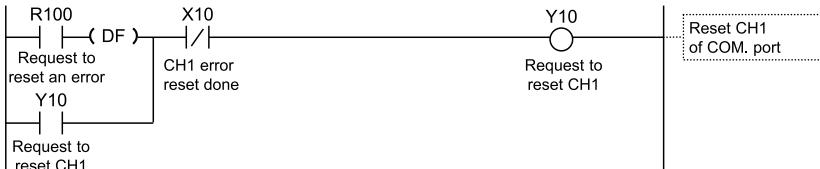
10.4 Clearing Errors Using User Programs

10.4 Clearing Errors Using User Programs

10.4.1 Clearing Errors Using User Programs

- Each error can be cleared by user programs.
- Refer to error codes, correct error factors, and clear the errors.

■ Clearing unit by UCLR instruction


- Executing the dedicated instruction UCLR clears errors occurred in a unit.

Example) Program to clear errors of a unit installed in the slot No.1

■ Resetting Communication ports by I/O signals

- Communication ports can be reset by turning on the reset request signals (Y10 to Y13) with user programs when a communication error occurs.
- The signals (X0 to X13) turn on when the reset is completed. Then, turn off the reset request signals (Y10 to Y13).

■ Allocation of I/O signals

Signal name	COM.0	COM.1	COM.2	COM.3	COM.4
Request to reset CH	Y12	Y10	Y11	Y12	Y13
Reset done	X12	X10	X11	X12	X13

(Note 1) The above I/O numbers are those for the slot number 0 (CPU with built-in SCU) and the COM. 1 port. The I/O numbers actually used vary according to the slot number where the unit is installed and the starting word number.

11 Specifications

11.1	Communication Function Specifications	11-2
11.1.1	CPU Unit Communication Specifications	11-2
11.1.2	Extension Cassette Communication Specifications	11-2
11.2	MEWTOCOL-COM Format	11-4
11.2.1	MEWTOCOL-COM command Format	11-4
11.2.2	MEWTOCOL-COM Response Format	11-5
11.3	MEWTOCOL7-COM Format	11-7
11.3.1	MEWTOCOL7-COM Command Format	11-7
11.3.2	MEWTOCOL7-COM Response Format	11-8
11.4	MODBUS RTU Format	11-10
11.4.1	MODBUS RTU command format	11-10
11.4.2	MODBUS RTU Response Format	11-10

11.1 Communication Function Specifications

11.1 Communication Function Specifications

11.1.1 CPU Unit Communication Specifications

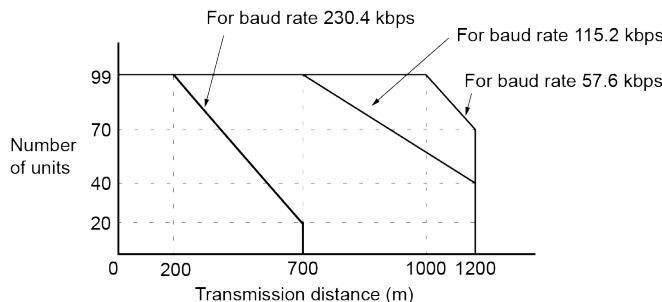
■ USB port (for tool software)

Items	Description
Standard	USB2.0 FULL SPEED
Communication function	MEWTOCOL-COM (slave), MEWTOCOL7-COM (slave)

■ COM.0 Port

Items	Description
Interface	3-wire 1-channel RS-232C
Transmission distance	15 m (Note 1)
Baud rate	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400 bit / s
Communication method	Half-duplex transmission
Synchronous method	Start stop synchronous system
Communication format	Data length: 7 bits / 8 bits, stop bit: 1 bit / 2 bits, parity: Yes / No (Odd / Even) Start code: Without STX / With STX, end code: CR / CR + LF / None / ETX
Data transmission order	Transmits from bit 0 character by character.
Communication function	MEWTOCOL-COM (master/slave), MEWTOCOL7-COM (slave) MODBUS RTU (master/slave) general-purpose communication modem initialization

(Note 1) When communication is performed at a baud rate of 38400 bit/s or higher, use a cable not longer than 3 m. When wiring RS-232C, a shielded wire must be used to increase noise suppression.

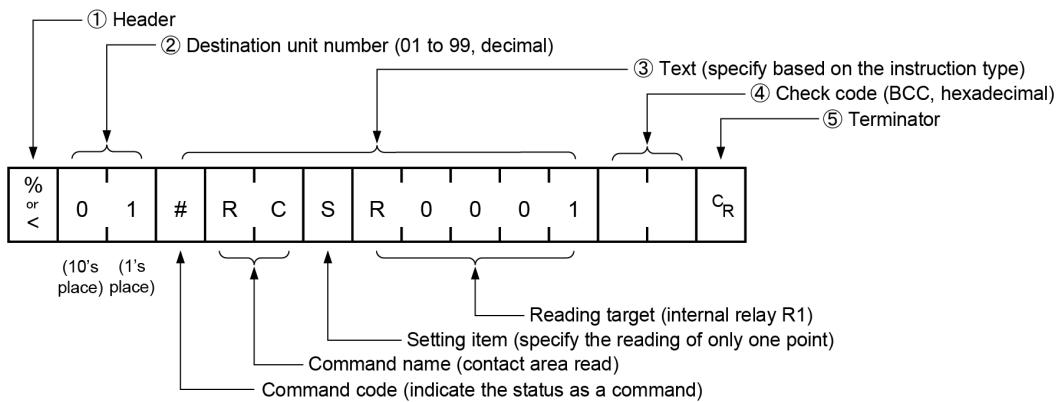

11.1.2 Extension Cassette Communication Specifications

■ COM.1 Port / COM.2 Port / COM.3 Port / COM.4 Port

Items	Description				
	AFP7CCRS1	AFP7CCRS2	AFP7CCRM1	AFP7CCRM2	AFP7CCRS1M1
Interface	3-wire 1-channel RS-232C	3-wire 2-channel RS-232C (Note 1)	1-channel RS-422/RS-485 (Note 2)(Note 3)	2-channel RS-422/RS-485 (Note 2)(Note 3)	3-wire 1-channel RS-232C 1-channel RS-485 (Note 3)
Transmission distance	Max. 15 m (Note 4)		When RS-422 is used: Max. 400 m When RS-485 is used: Max. 1200 m (Note 5)(Note 6)		RS-232C: Max. 15 m RS-485: Max. 1200 m

Items	Description				
	AFP7CCRS1	AFP7CCRS2	AFP7CCRM1	AFP7CCRM2	AFP7CCRS1M1
					(Note 5)(Note 6)
Baud rate	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400 bit/s				
Communication method	Half-duplex transmission (Note 7)				
Synchronous method	Start stop synchronous system				
Communication format	Data length: 7 bits / 8 bits, stop bit: 1 bit / 2 bits, parity: Yes / No (Odd / Even) Start code: Without STX / With STX, end code: CR / CR + LF / None / ETX				
Data transmission order	Transmits from bit 0 character by character.				
Communication functions and No. of units that can be connected	PLC link: Max. 16 units MEWTOCOL-COM (master/slave), MEWTOCOL7-COM (slave): Max. 99 units MODBUS RTU (master/slave): Max. 99 units General-purpose communication: Max. 99 units Modem initialization				

- (Note 1) By switching on the dip switch on the cassette, you can use the unit as 5-wire 1-channel RS-232C.
- (Note 2) By switching on the dip switch on the cassette, you can switch between RS-422 and RS-485.
- (Note 3) When connecting a commercially available device that has an RS-485/RS-422 interface, please confirm operation using the actual device. In some cases, the number of units, transmission distance, and baud rate vary depending on the connected device.
- (Note 4) When communication is performed at a baud rate of 38400 bit/s or higher, use a cable not longer than 3 m. When wiring RS-232C, a shielded wire must be used to increase noise suppression.
- (Note 5) The transmission distance is limited by the specified baud rate and No. of connected units in the RS-485 setting. When using a baud rate of 38400 bps or less, the allowable settings are a maximum of 1200 m and 99 units. When a C-NET adapter is mixed, the maximum number of connected units is 32, and the baud rate is limited to 19200 bps or less.



- (Note 6) The converter SI-35 manufactured by Lineeye Co., Ltd is recommended for the RS-485 at the computer side.
- (Note 7) In general-purpose communication, RS-232C and RS-422 use full-duplex transmission.

11.2 MEWTOCOL-COM Format

11.2.1 MEWTOCOL-COM command Format

■ Command message

(1) Header (start code)

- Commands must always have a "%" (ASCII code: H25) or a "<" (ASCII code: H3C) at the beginning of a message.

Info.

- An expansion header "<" is supported to send and receive single frames of up to 2048 characters as well as general "%".

Type of header	No. of characters that can be sent in 1 frame
%	Max. 118 characters
<	Max. 2048 characters

(2) Station no.

- The station no. of the PLC to which you want to send the command must be specified. The station no. of the PLC is specified by the system register.
- In 1:1 communication, specify "01" (ASCII code: H3031) or "EE" (ASCII code: H4545).

Info.

- When the PLC receives a command with "EE" specified for the station number, it will respond regardless of the station number setting.

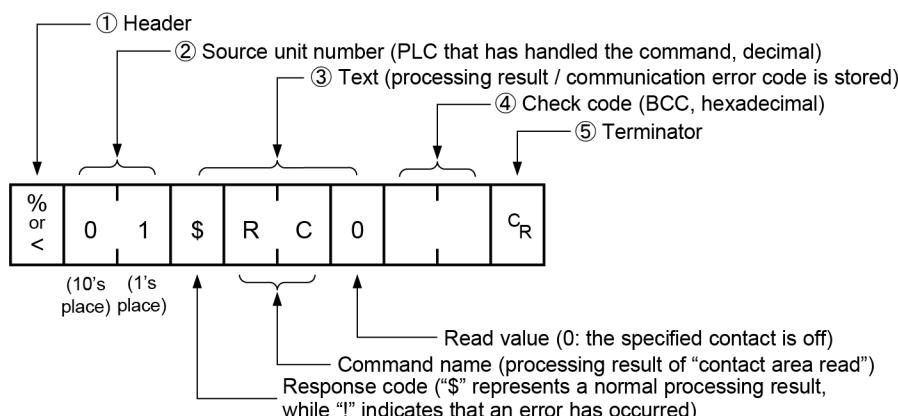
Specifying "EE" for 1:1 communication enables communication regardless of the station number setting of the receiving PLC.

(3) Text

- The content of this varies depending on the type of command. The content should be noted in all upper-case characters, following the fixed formula.

(4) Check code

- This is a BCC (block check code) for error detection using horizontal parity. The BCC should be created so that it targets all of the text data from the header to the last text character.
- BCC starts from the header and checks each character in sequence, using the exclusive OR operation, and replaces the final result with character text (ASCII code). It is normally part of the calculation program and is created automatically.
- BCC can be skipped by entering “* *” (ASCII code: H2A2A) in place of BCC.


(5) Terminator (end code)

- Messages must always end with a “CR” (ASCII code: H0D).

- The method for writing text segments in the message varies depending on the type of command.
- When the message to be sent contains a large number of characters, send the command divided in several times.
- When the message contains a large number of characters, the response is sent divided in several times.

11.2.2 MEWTOCOL-COM Response Format**■ Response message**

The PLC that received the command returns the processing result.

(1) Header (start code)

- Commands must always have a “%” (ASCII code: H25) or a “<” (ASCII code: H3C) at the beginning of a message.
- The response must start with the same header that was at the beginning of the command.

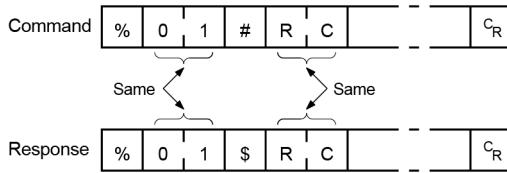
(2) Unit number

- The unit number of the PLC that processed the command

(3) Text

- The content varies depending on the type of instruction. If the processing is not completed successfully, an error code will be stored here, so that the content of the error can be checked.

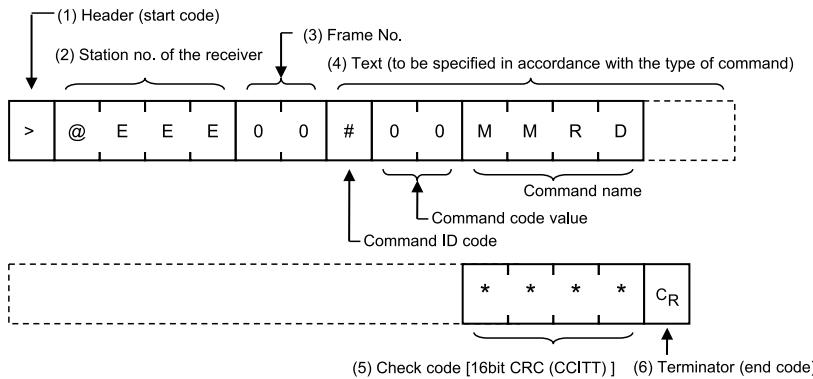
(4) Check code


- This is a BCC (block check code) for error detection using horizontal parity.
- BCC starts from the header and checks each character in sequence, using the exclusive OR operation, and replaces the final result with character text.

(5) Terminator (end code)

- Messages must always end with a “CR” (ASCII code: H0D).

! If no response is returned, the transmission format may not be correct, the command may not have arrived at the PLC, or the PLC may not be functioning. Check to make sure all of the communication specifications (e.g. baud rate, data length, parity) are aligned.


- If the response contains an “!” instead of a “\$”, the command was not processed successfully. The response will contain a communication error code. Check the meaning of the error code.
- Unit number and command name are always identical in a command and its corresponding response, as indicated below. This makes correspondence between a command and a response clear.

11.3 MEWTOCOL7-COM Format

11.3.1 MEWTOCOL7-COM Command Format

■ Command message

(1) Header (start code)

A ">" (ASCII code: H3E) must be at the beginning of a message.

i Info.

- The method for writing text segments in the message varies depending on the type of command.
- When the message to be sent contains a large number of characters, send the command divided in several times.
- When the message contains a large number of characters, the response is sent divided in several times.
- In MEWTOCOL7-COM command, up to 4096 characters can be sent/received in a single frame.

Type of header	No. of characters that can be sent in 1 frame
>	Max. 4096 characters

(2) Station no.

- The station no. of the receiving PLC to which you want to send the command must be specified with "@ and three digits". The station no. of the PLC is specified by the system register. In the case of the FP7 CPU unit, the station no. is specified in the FPWIN GR7 configuration menu.
- In 1:1 communication, specify "001" (ASCII code: H303031) or "EEE" (ASCII code: H45H4545).

i Info.

- When the PLC receives a command with "EEE" specified for the station number, it will respond regardless of the station number setting.

Specifying "EEE" for 1:1 communication enables communication regardless of the station number setting of the receiving PLC.

11.3 MEWTOCOL7-COM Format

(3) Frame No.

This indicates the sending frame No. Make sure to use consecutive frame numbers.

E.g. commands for multiple frames

>@EEE00#00MMRDD001G0DT0000000001000***CR

>@EEE01***& CR

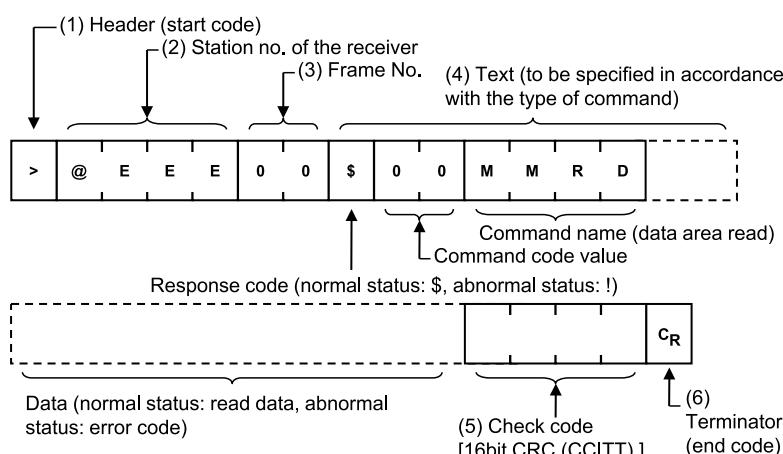
* Make sure to use consecutive values for frame numbers. The usable number range is from 00 to FF. After FF, return to 00.

(4) Text

The content of this varies depending on the type of command. The content should be noted in all upper-case characters,

following the fixed formula for the particular command.

(5) Check code


- This is a CRC (Cyclic Redundancy Check) to detect errors using a generating polynomial of hamming codes.
- This should be created so that it targets all of the text data from the header to the last text character.
- CRC is text information that is converted from the results of calculations made by CRC-16-CCITT. Normally, CRC is automatically generated by incorporating calculation programs or other similar programs.

(6) Terminator (end code)

Messages must always end with a “CR” (ASCII code: H0D).

11.3.2 MEWTOCOL7-COM Response Format

■ Response message

(1) Header (start code)

- A “>” (ASCII code: H3E) must be at the beginning of a message.
- The response must start with the same header (start code).

(2) Station no.

This is the station no. of the PLC that processed the command.

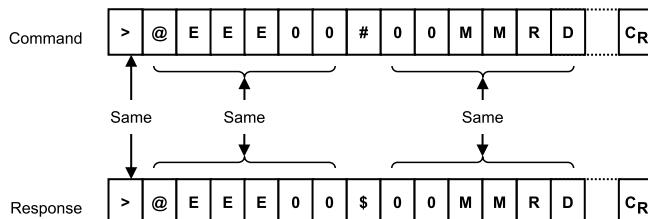
(3) Frame No.

This is the frame number where the command was processed.

(4) Text

The content of this varies depending on the type of command. If the processing is not completed successfully, an error code will be stored here, so that the content of the error can be checked.

(5) Check code


- This is a CRC (Cyclic Redundancy Check) to detect errors using a generating polynomial of hamming codes.
- This should be created so that it targets all of the text data from the header to the last text character.
- CRC is text information that is converted from the results of calculations made by CRC-16-CCITT. Normally, CRC is automatically generated by incorporating calculation programs or other similar programs.

(6) Terminator (end code)

The message should end with "CR" (ASCII code: H0D).

 Note

- If no response is returned, the communication format may not be correct, or the command may not have arrived at the PLC, or the PLC may not be functioning. Check to make sure all of the communication specifications (e.g. baud rate, data length, and parity) match between the computer and the PLC.
- If the response contains an "!" instead of a "\$", the command was not processed successfully. The response will contain a communication error code. Check the meaning of the error code.
- Station no. and command name are always identical in a command and its corresponding response (see below). This makes the correspondence between a command and a response clear.

11.4 MODBUS RTU Format

11.4 MODBUS RTU Format

11.4.1 MODBUS RTU command format

■ MODBUS RTU command format

START	ADDRESS	FUNCTION	DATA	CRC CHECK	END
3.5-character time	8 bits	8 bits	n*8 bits	16 bits	3.5-character time
ADDRESS (station no.)	8 bits, 0 to 255 (decimal) ^(Note 1)				
FUNCTION	8 bit				
DATA	Varies depending on commands.				
CRC	16 bit				
END	3.5-character time (Differs depending on baud rate. Refer to the "Reception judgment time" section.)				

(Note 1) 0 = Broadcast address

■ Reception judgment time

The process for receiving a message completes when the time that is exceeding the time mentioned below has passed after the final data was received. Reception done judgment time is set at approx. 32 bits of time.

Baud rate	Reception done judgment time
300	Approx. 106.7 ms
600	Approx. 53.3 ms
1200	Approx. 26.7 ms
2400	Approx. 13.3 ms
4800	Approx. 6.7 ms
9600	Approx. 3.3 ms
19200	Approx. 1.7 ms
38400	Approx. 0.8 ms
57600	Approx. 0.6 ms
115200	Approx. 0.3 ms
230400	Approx. 0.14 ms

11.4.2 MODBUS RTU Response Format

■ Response in normal status

- The same message as a command is returned for a single write command or for a loop back test.

- A part of a command message (6 bytes from the beginning) is returned for multiple write command.

■ Response in abnormal status

In case a parameter disabled to be processed is found in a command (except transmission error)

Slave address (Unit No.)	1, 2, or 3
Function code + 80H	
Error code	
CRC	

■ Error code contents

1. Function code error
2. Device No. error (outside the range)
3. Device quantity error (outside the range)

(MEMO)

Index

G

GP_RECV 9-21
GP_SEND 9-6
GPTRNS 9-6

P

pGP_SEND 9-6

R

RECV
 MEWTTOCOL 7-7,8-6
 MODBUS 8-14

S

SEND 7-17,8-23
 MEWTTOCOL 7-17,8-23
 MODBUS 8-31

Record of Changes

The manual number can be found at the bottom of the manual cover.

Date	Manual No.	Record of Changes
Dec. 2012	WUME-FP7COM-01	1st Edition
Feb. 2013	WUME-FP7COM-02	2nd Edition ● Amended errors
Sep. 2013	WUME-FP7COM-03	3rd Edition ● Added model Serial communication AFP7NSC ● Changed manual name
Apr. 2020	WUME-FP7COM-04	4th Edition ● Amended errors
May 2020	WUME-FP7COM-05	5th Edition ● Amended errors
Nov. 2022	WUME-FP7COM-06	6th Edition ● Changed product type following FP7 update ● Added information about the MEWTOCOL-COM command and 1:1 communication. ● Changed manual formatting
Jul. 2023	WUME-FP7COM-07	7th Edition "10.3.2 List of Communication Parameters" SCU COM. port operation status monitor information ● Added explanation and countermeasures for "[D+2] Reception error code".
Apr. 2024	WUME-FP7COM-08	8th Edition ● Change in Corporate name

Order Placement Recommendations and Considerations

The Products and Specifications listed in this document are subject to change (including specifications, manufacturing facility and discontinuing the Products) as occasioned by the improvements of Products. Consequently, when you place orders for these Products, Panasonic Industry Co., Ltd. asks you to contact one of our customer service representatives and check that the details listed in the document are commensurate with the most up-to-date information.

[Safety precautions]

Panasonic Industry Co., Ltd. is consistently striving to improve quality and reliability. However, the fact remains that electrical components and devices generally cause failures at a given statistical probability. Furthermore, their durability varies with use environments or use conditions. In this respect, check for actual electrical components and devices under actual conditions before use. Continued usage in a state of degraded condition may cause the deteriorated insulation. Thus, it may result in abnormal heat, smoke or fire. Carry out safety design and periodic maintenance including redundancy design, design for fire spread prevention, and design for malfunction prevention so that no accidents resulting in injury or death, fire accidents, or social damage will be caused as a result of failure of the Products or ending life of the Products.

The Products are designed and manufactured for the industrial indoor environment use. Make sure standards, laws and regulations in case the Products are incorporated to machinery, system, apparatus, and so forth. With regard to the mentioned above, confirm the conformity of the Products by yourself.

Do not use the Products for the application which breakdown or malfunction of Products may cause damage to the body or property.

- i) usage intended to protect the body and ensure security of life
- ii) application which the performance degradation or quality problems, such as breakdown, of the Products may directly result in damage to the body or property

It is not allowed the use of Products by incorporating into machinery and systems indicated below because the conformity, performance, and quality of Products are not guaranteed under such usage.

- i) transport machinery (cars, trains, boats and ships, etc.)
- ii) control equipment for transportation
- iii) disaster-prevention equipment / security equipment
- iv) control equipment for electric power generation
- v) nuclear control system
- vi) aircraft equipment, aerospace equipment, and submarine repeater
- vii) burning appliances
- viii) military devices
- ix) medical devices (except for general controls)
- x) machinery and systems which especially require the high level of reliability and safety

[Acceptance inspection]

In connection with the Products you have purchased from us or with the Products delivered to your premises, please perform an acceptance inspection with all due speed and, in connection with the handling of our Products both before and during the acceptance inspection, please give full consideration to the control and preservation of our Products.

[Warranty period]

Unless otherwise stipulated by both parties, the warranty period of our Products is three years after the purchase by you or after their delivery to the location specified by you. The consumable items such as battery, relay, filter and other supplemental materials are excluded from the warranty.

[Scope of warranty]

In the event that Panasonic Industry Co., Ltd. confirms any failures or defects of the Products by reasons solely attributable to Panasonic Industry Co., Ltd. during the warranty period, Panasonic Industry Co., Ltd. shall supply the replacements of the Products, parts or replace and/or repair the defective portion by free of charge at the location where the Products were purchased or delivered to your premises as soon as possible.

However, the following failures and defects are not covered by warranty and we are not responsible for such failures and defects.

- (1) When the failure or defect was caused by a specification, standard, handling method, etc. which was specified by you.
- (2) When the failure or defect was caused after purchase or delivery to your premises by an alteration in construction, performance, specification, etc. which did not involve us.
- (3) When the failure or defect was caused by a phenomenon that could not be predicted by the technology at purchasing or contracted time.
- (4) When the use of our Products deviated from the scope of the conditions and environment set forth in the instruction manual and specifications.
- (5) When, after our Products were incorporated into your products or equipment for use, damage resulted which could have been avoided if your products or equipment had been equipped with the functions, construction, etc. the provision of which is accepted practice in the industry.
- (6) When the failure or defect was caused by a natural disaster or other force majeure.
- (7) When the equipment is damaged due to corrosion caused by corrosive gases etc. in the surroundings.

The above terms and conditions shall not cover any induced damages by the failure or defects of the Products, and not cover your production items which are produced or fabricated by using the Products. In any case, our responsibility for compensation is limited to the amount paid for the Products.

[Scope of service]

The cost of delivered Products does not include the cost of dispatching an engineer, etc. In case any such service is needed, contact our sales representative.

Panasonic Industry Co., Ltd.

(MEMO)

(MEMO)

Panasonic Industry Co., Ltd.

1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan
<https://industry.panasonic.com/>

Please visit our website for inquiries and about our sales network.

© Panasonic Industry Co., Ltd. 2012-2025

June, 2025

WUME-FP7COM-081