FP7 CPU Unit Ver 3.20 Additional Functions Manual

December 15, 2014

Introduction

Thank you for buying a Panasonic product. Before you use the product, please carefully read the installation instructions and the users manual, and understand their contents in detail to use the product properly.

Types of Manual

- There are different types of users manual for the FP7 series, as listed below. Please refer to a relevant manual for the unit and purpose of your use.
-The manuals can be downloaded on our website:
http://industrial.panasonic.com/ac/e/dl center/manual/

Unit name or purpose of use	Manual name	Manual code
FP7 Power Supply Unit	FP7 CPU Unit Users Manual (Hardware)	WUME-FP7CPUH
FP7 CPU Unit		WUME-FP7CPUPGR
Instructions for Built-in COM Port FP7 series Users Manual (SCU communication)	WUME-FP7COM	
FP7 Extension Cassette (Communication)		WUME-FP7LAN
Instructions for Built-in LAN Port	FP7 CPU Unit Users Manual (LAN Port Communication)	WUME-FP7DIO
FP7 Digital Input/Output Unit	FP7 Digital Input/Output Unit Users Manual	WUME-FP7AIH
FP7 Analog Input Unit	FP7 Analog Input Unit Users Manual	WUME-FP7AOH
FP7 Analog Output Unit	FP7 Analog Output Unit Users Manual	WUME-FP7POSP
FP7 Positioning Unit	FP7 Positioning Unit Users Manual	WUME-PHLS
PHLS System	PHLS System Users Manual	WUME-FPWINGR7
Programming Software FPWIN GR7	FPWIN GR7 Introduction Guidance	

Table of Contents

1. Basic Instructions 1-1
1.1 GPB (Global PB Number Setting) 1-2
2. High-level Instructions 2-1
2.1 PanaSD (Panasonic SD Card Lifetime Information Read) 2-2
2.2 LCWT (Specified PB Local Device Write) 2-5
2.3 LCRD (Specified PB Local Device Read) 2-7
2.4 STDDEV (Variance and Standard Deviation Acquisition) 2-11
2.5 MLCLIP (Saturated Multiplication) 2-14
2.6 TIMEstr (Date and Time Character String Conversion) 2-16
2.7 SCOPY (System Area Copy) 2-21
2.8 BSWAP (High /Low Byte in n Block Exchange) 2-23
2.9 MV2 (2 Data Move) 2-25
2.10 MV3 (3 Data Move) 2-27
2.11 DEFRBUF (Ring Buffer Definition) 2-29
2.12 RBUFW (Write to Ring Buffer, Calculation of Total Value and Moving Average Value) 2-31
3. List of Instructions 3-1
3.1 List of Basic Instructions 3-2
3.2 List of High-level Instructions 3-3

Basic Instructions

1.1 GPB (Global PB Number Setting)

Ladder diagram

List of operands

Operand	Description
n	Global PB number Data settable range: 1000 to 1999 l

Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String	Index modifier
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \hline \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	U	H	SF	DF	" "	
n																A					

■ Outline of operation

- Declares the global PB number of $[\mathrm{n}]$ for the PB in which GPB instruction is written.
-This instruction should be described at the beginning of a main program area.
- Sets an active PB number to a specified global PB number table in the preprocessing of arithmetic operation (when switching PROG to RUN, during rewriting during RUN).
- A syntax error occurs when the same global PB number is specified in a project.
- When multiple GPB instructions are described in the same PB, multiple global PB numbers are set for one PB.
- Specify PB numbers as follows for instructions that use PB numbers (ECALL, EFCALL, LCWT, LCRD, STARTPG, an STOPPG).

PB number specification: 1 to 468
Global PB number specification: 1000 to 1999

- A syntax error occurs when a number (other than 1000 to 1999) that is out of the range of the settable global PB numbers is specified by the GPB instruction.
- An operation error occurs when an global PB number that is not set is specified for an instruction that uses a PB number.
- Example of operation

PB1

2

High-level Instructions

2.1 PanaSD (Panasonic SD Card Lifetime Information Read)

- Ladder diagram

Available operation units (A: Available)

No operation unit.

List of operands

Operand	Description
D1	The device address storing an execution result code
D2	The starting address of the device storing the acquisition time of SD card lifetime information
D3	The device address storing the number of rewrites information

Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String	Index modifier
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	W0	$\begin{aligned} & \text { TS } \\ & \text { CS } \end{aligned}$	TE $C E$	IX	K	U	H	SF	DF	" "	
D1	A	A	A	A			A	A													
D2	A	A	A	A			A	A													
D3	A	A	A	A			A	A													

■ Outline of operation

- This instruction is used to read the lifetime information of Panasonic SD card.
- This instruction and SD card access instruction can be used simultaneously.
- Stores the execution result of this instruction in the area starting with [D1], [D2] and [D3].
- The duplicate execution of this instruction is not possible.
- Do not use this instruction frequently. Executing this event by a differential instruction is recommended
- This instruction is exclusive to industrial SD cards made by Panasonic. This cannot be used for other SD cards.
The SD cards that support this instruction are as follows.
SD card series supports the PanaSD instruction (as of October 2014)

Type	Series
SLC	FX, EX
MLC	JD, GD, PC

Operand [D1]

- The starting number of the device area storing execution results (1-word, unsigned 16-bit integer)

- Execution result

Execution result	Value
Execution active	$0 x f f f{ }^{* 1}$
Normal end	0
Double startup error	1
SD card cover open error	2
SD card not mounted error	3
Unsupported SD card error *2	4

*1 The most significant bit of the execution result code can be used as an instruction active flag.
*2 The SD card series which support this instruction is described in the outline of operation.

Operand [D2]

- The starting number of the device area storing the acquisition time of SD card lifetime information is specified.

Contents

Device	Acquisition time	(Example) Value	Remarks
$[\mathrm{D} 2]$	Year, month	1410	October 2014
$[\mathrm{D} 2+1]$	Day, hour	0318	18 o'clock on 3rd
$[\mathrm{D} 3+2]$	Minute, second	5530	55 minutes and 30 seconds

Operand [D3]

- The starting number of the device area storing the number of rewrites information (1-word, unsigned 16-bit integer) is specified.

Contents

■ Example of processing

Example 1) When the execution result of PanaSD instruction is Normal

Example 2) When the execution result of PanaSD instruction is Error.
[D1]...DT10 [D2]...DT11~DT13 [D3]...DT15
When instruction is executed When SD card information Reading SD card is complete.

DT10		read		supported SD card error)		
	H FFFF	DT10	H FFFF	DT10	H 3	Execution result code :3
DT11		DT11		DT11	H 0	Year, month :0
DT12		DT12		DT12	H 0	Day, hour :0
DT13		DT13		DT13	H 0	Minute, second :0
DT14		DT14		DT14		
DT15		DT15		DT15	H0	No. of rewrites info. :0

Flag operation

Name	Description
SR7	
SR8	
(ER)	

2.2 LCWT (Specified PB Local Device Write)

■ Ladder diagram

■ Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A	A	A		

- List of operands

Operand	Description
S	The starting address of a source device
n	No. of written devices (Settable range: 1 to 65535)
PBm	Destination PB number (Settable range: 1 to Max. number of PB)
D	The starting address of a source local device

■ Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Realnumber		String	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \hline \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \hline \text { TE } \\ & \text { CE } \end{aligned}$	$\mathrm{IX}_{\text {*2 }}$	K	U	H	SF	DF	" "	
S	A	A	A	A			A	A				A	A	A							A
n	A	A	A	A			A	A								A	A				A
PBm	A	A	A	A			A	A								A	A				A
D	A	A	A	A			A	A				A	A								

*1: Only 16-bit devices, and 32-bit devices can be modified. (Integer constants, real number constants and character constants cannot be specified.)
*2: Index registers (10 to IE)

■ Outline of operation

- Writes the data for $[\mathrm{n}]$ from the area specified by [S] to the area specified by [PBm:D (local device)] and subsequent areas all at once.
- Global device and local device (of the PB in which this instruction is executed) can be specified for [S].
- Only local devices (of PB numbers specified by [PBm]) can be specified for [D].
- * Pseudo argument specification is possible by combining this instruction with the ECALL instruction.
Refer to "Argument, return value operation of ECALL instruction
-".
- * Local devices of multiple PBs can be preset by one PB.

Refer to "Presetting of specified PB local devices".

- Processing

Example 1) When global device is specified for S
[S]...DT1
[n]... 3
[PBm]... 2
[D]..._WY10

DT0	H 0011	PB2:_WY8	H 0000
DT1	H 2233	PB2: WY9	H 0000
DT2	H 4455	PB2:_WY10	H 2233
DT3	H 6677	PB2:_WY11	H 4455
DT4	H 8899	PB2:_WY12	H 6677

Example 2) When local device is specified for S (Instruction is executed in PB5.)
[S]..._LD10
[n]... 2
[PBm]... 3
[D]..._DT8

PB5:_LD9	H 8899	PB3:_DT7	H 0000
PB5:_LD10	H AABB	- PB3:_DT8	H AABB
PB5:_LD11	H CCDD	\rightarrow PB3:_DT9	H CCDD
PB5:_LD12	H EEFF	PB3:_DT10	H 0000
PB5:_LD13	H FFEE	PB3:_DT11	H 0000

Flag operation

Name	Description
SR7 SR8 (ER)	To be set when an out-of-range value is specified for parameters.
	To be set when the device address specified by [S+n] exceeds the upper limit of the device.
	To be set when [PBm] exceeds the maximum PB number.
	To be set when [D] is specified for a global device.
	To be set when the device address specified by $[P B m][\mathrm{D}+\mathrm{n}]$ exceeds the upper limit of the device.

2.3 LCRD (Specified PB Local Device Read)

- Ladder diagram

- Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A	A	A		

List of operands

Operand	Description
PBm	Source PB number (Settable range: 1 to Max. number of PB)
S	The starting address of source local device
n	The number of read devices (Settable range: 1 to 65535)
D	The starting address of destination device

Available devices (A: Available)

Operand	16-bit device											$\underset{* 1}{32 \text {-bit device }}$			Integer			Real number		String	Index modifier
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \mathrm{TS} \\ & \mathrm{CS} \end{aligned}$	$\begin{aligned} & \text { TE } \\ & \text { CE } \end{aligned}$	$\begin{aligned} & \mathrm{Ix} \\ & { }^{2} \end{aligned}$	K	U	H	SF	DF	" "	
PBm	A	A	A	A			A	A								A	A				A
S	A	A	A	A			A	A				A	A								
n	A	A	A	A			A	A								A	A				A
D	A	A	A	A			A	A				A	A	A							A

*1: Cannot be specified when the operation unit is 16-bit integer (SS, US).
*2: Index registers (10 to IE)

■ Outline of operation

- Reads the data for [n] from the area specified by [PBm]:[S] (local device)] to the area specified by [D] and subsequent areas all at once.
- Only local devices (of PB numbers specified by [PBm]) can be specified for [S].
- Global device and local device (of the PB in which this instruction is executed) can be specified for [D].
- * Pseudo argument specification is possible by combining this instruction with the ECALL instruction.
Refer to Argument, return value operation of ECALL instruction
- .

- Processing

Example 1) When global device is specified for D
[PBm]... $2 \quad[\mathrm{~S}] \ldots$ WY10
[n]... 3
[D]...DT1

PB2:_WY8	H 0000	DT0	H 0011
PB2: WY9	H 0000	DT1	H 2233
PB2:_WY10	H 2233	DT2	H 4455
PB2:_WY11	H 4455	DT3	H 6677
PB2:_WY12	H 6677	DT4	H 8899

Example 2) When local device is specified for D (Instruction is executed in PB5.)
[PBm]... 3
[S]..._DT8
[n$] \ldots 2$
[D]..._LD10

PB3:_DT7	H 0000
PB3:_DT8	H AABB
PB3:_DT9	H CCDD
PB3:_DT10	H 0000
	H 0000

PB5:_LD9	H 8899
PB5:_LD10	H AABB
PB5: LD11	H CCDD
PB5:_LD12	H EEFF
PB5:_LD13	H FFEE

Flag operation

Name	Description
SR7 SR8 (ER)	To be set when an out-of-range value is specified for parameters.
	To be set when [PBm] exceeds the maximum PB number.
	To be set when [S] is specified for a global device.
	To be set when the device address specified by [PBm]:[S+n] exceeds the upper limit of the device.
	To be set when the device address specified by [D+n] exceeds the upper limit of the device.

■ Argument, return value operation of ECALL instruction

Method of giving argument to subroutine in another PB by LCWT and receiving return value by LCRD Example of processing
Calls SBL1 in PB3 from PB1, and receives the result.
SBL1 is the subroutine which calculates "Argument $1+$ Argument $2 \rightarrow$ Return value" or "Argument 1 Argument $2 \rightarrow$ Return value".

- Presetting of specified PB local devices

Method of initializing devices to the local devices of specified PBs from one PB Example of processing
Executes the instruction in PB1, and sets to initialize devices to the local devices of PB2 to 4 collectively.

2.4 STDDEV (Variance and Standard Deviation Acquisition)

■ Ladder diagram

Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A				

List of operands

Operand	Description
S	Specify the starting positin of a target area. (Data format: according to the operaiton unit)
n	Specify the number of target data. (Data format: unsigned 16-bit integer)
D	Specify the device address storing results.

\square Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String " "	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	$\begin{gathered} \text { U } \\ \text { *2 } \end{gathered}$	$\begin{gathered} \text { H } \\ \text { *3 } \end{gathered}$	SF	DF		
S	A	A	A	A			A	A	A	A	A										A
n	A	A	A	A			A	A	A	A	A					A	A				A
D	A	A	A	A			A	A	A		A										A

*1: Only 16-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)
*2: Can be specified only when the operation unit is unsigned integer (US).
*3: Can be specified only when the operation unit is integer (US, SS).

■ Outline of operation

- Stores the variance and standard deviation within the range of the device area specified by [S] and [n] into the device area specified by [D].
- Up to 30000 data can be specified.
- The result [D] is output as single-precision real numbers.

16 -bit device	Output content
$[\mathrm{D}],[\mathrm{D}]+1$	Stores variance.
$[\mathrm{D}]+2,[\mathrm{D}]+3$	Stores standard deviation.

- Processing

Method for calculating variance and standard deviation
[Condition] N data $\times 1, \mathrm{x} 2, \ldots, \mathrm{xn}$
(1) Mean Value

$$
\mathbf{m}=\frac{\mathbf{x}_{1}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{\mathrm{n}}}{\mathrm{~N}}
$$

(2) Variance

$$
\sigma^{2}=\frac{\left(\mathbf{x}_{1}-\mathbf{m}\right)^{2}+\left(\mathbf{x}_{2}-\mathbf{m}\right)^{2}+\cdots+\left(\mathbf{x}_{\mathrm{n}}-\mathbf{m}\right)^{2}}{\mathrm{~N}}
$$

(3) Standard deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

Example 1) When the operation unit is 16-bit (US)
[S]...DT10
[n]...U5
[D]...DT100

The following results are stored.

- Variance of S to $S+4$ is stored in (D, D+1).
- Standard deviation of S to $S+4$ is stored in ($D+2, D+3$).

Example 2) When the operation unit is 16 -bit (SS)
[S]...DT10
[n]...U5
[D]...DT100
<Calculation range> <Output result>

DT10	K 16
DT11	K-20
DT12	K 32
DT13	K-35
DT14	K-12

The following results are stored.

- Variance of S to $\mathrm{S}+4$ is stored in (D, D+1).
- Standard deviation of S to $S+4$ is stored in ($D+2, D+3$).

Flag operation

Name	Description
SR7	To be set in case of out-of-range values in indirect access (index modification, pointer access).
	To be set when [S+n] exceeds the device address.
	To be set when the result storage area exceeds the device address.
	To be set when the specified ranges of [S1] and [D] overlap.

2.5 MLCLIP (Saturated Multiplication)

- Ladder diagram

Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A	A	A		

List of operands

Operand	Description
S1	Target data 1 for operation (Device address or constant)
S2	Target data 2 for operation (Device address or constant)
D	Operation result data (Device address)

Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String " "	Index modifier *2
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \text { TE } \\ & \text { CE } \end{aligned}$	$\underset{{ }_{*}}{\text { IX }}$	$\underset{* 4}{K}$	$\underset{*_{5}}{U}$	$\underset{* 6}{H}$	$\underset{\star 7}{\mathrm{SF}}$	$\begin{aligned} & \text { DF } \\ & \text { *8 } \end{aligned}$		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A				A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A				A
D	A	A	A	A			A	A	A		A	A	A	A							A

*1: Cannot be specified when the operation unit is 16-bit integer (SS, US).
*2: Only 16-bit deivces, 32-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)
*3: Index registers (10 to IE)
*4: Can be specified only when the operation unit is signed integer (SS, SL).
*5: Can be specified only when the operation unit is unsigned integer (US, UL).
*6: Can be specified only when the operation unit is integer (US, SS, UL, SL).

- Outline of operation

- Multiplies [S1] by [S2] according to the operation unit of [i].
- Stores operation results in the address starting with [D].
$[\mathrm{S} 1] \times[\mathrm{S} 2] \rightarrow[\mathrm{D}]$
- As for the unsigned operation, if the result exceeds the operation unit, it is corrected to the maximum value.
- As for the signed operation, if the result exceeds the operation unit, it is corrected to the maximum or minimum value.

■ Processing

Example 1) When the operation unit is 16 -bit (US, SS) Example 2) When the operation unit is 32 -bit (UL, SL, SF) [i]...US,SS
[i]...UL,SL,SF
[S1]...DT1 [S2]...DT2 [D]...DT3

DT0	K 100	DT0	K 100
DT1	K 110	DT1	K 110
DT2	K 120	DT2	K 120
DT3	K 130	DT3	K 13200
DT	K 140	DT	K 10

[S1]...TS2 [S2]...TS3 [D]...TS0

TSO	K 500		\rightarrow TSO	300000
TS1	K 1000		TS1	K 1000
TS2	K 1500		TS2	K 1500
TS3	K 2000		TS3	K 2000
TS4	K 2500		TS4	K 2500

Example 3) When the operation unit is unsigned 16 -bit (US) and exceeds the max. value
[i]...US
[S1]...DT1 [S2]...DT4 [D]...DT3

Flag operation

Name	Description
SR7	
SR8	To be set in case of out-of-range values in indirect access (index modification).
(ER)	
SR9	To be set when the result is corrected, and cleared when it is not corrected.
(CY)	

2.6 TIMEstr (Date and Time Character String Conversion)

- Ladder diagram

Available Operation Units (A: Available)

No operation unit.

List of operands

Operand	Description
S1	The starting address storing date and time information
S2	The device address stroing conversion patterns
D	The starting address of the device storing character strings

Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	WO	$\begin{aligned} & \hline \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \hline \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	U	H	SF	DF	" "	
S1	A	A	A	A		A	A	A													A
S2	A	A	A	A			A	A									A				A
D	A	A	A	A			A	A													A

*1: Only 16-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)

■ Outline of operation

- Converts data and time information to character strings.
- Outputs character strings according to a specified conversion pattern.
- The date and time information to be output is year, month, day, day of the week, hour, minute, and second.
- This instruction can be used when data and time information is required for creating mail texts.
- This instruction is used in combination with the PRINT instruction.
- Converts the date and time information specified by [S1] according to the conversion pattern specified by [S2], and stores the character string in the storage location specified by [D].

Operand [S1] setting

- Specify the starting address storing the date and time information.
- Checking the combination of year, month, day, or day of the week is not performed.
- Specify SD50 if you want to output the current time and date of PLC. When SD50 is specified, the combination of year, month, day, or day of the week is correct.
- Always store the data in the order mentioned in the table below regardless of the conversion pattern of [S2].
- Specified contents

Operand	Contents	Specified range
$[\mathrm{S} 1]$	Year ${ }^{*}$	0 to 99
$[\mathrm{~S} 1+1]$	Month	1 to 12
$[\mathrm{~S} 1+2]$	Day	1 to 31
$[\mathrm{~S} 1+3]$	Hour	0 to 23
$[\mathrm{~S} 1+4]$	Minute	0 to 59
$[\mathrm{~S} 1+5]$	Second	0 to 59
$[\mathrm{~S} 1+6]$	Day of the week	0 to 6

* The character string after conversion is 2000 to 2099.

Operand [S2] setting

- Specify the device address storing a conversion pattern.
- The conversion pattern is specified by 4-digit hex. Refer to the following tables as the contents specified for each digit are predetermined.

\square Specified contents

4th digit	3rd digit	2nd digit	1st digit
Output pattern	Date and time specification	Addition of day of the week	Delimiter

■ Details of specified contents
4th digit: Output pattern

Value	Constitution (Order)	Format	Major regions	Month display	Day of the week display
0	Year/Month/Day/ (Day of the week)	1×1	Japan, Korea	Number	Chinese character
1	Year/Month/Day/ (Day of the week)	2×1	Japan, Korea	Number	Chinese character
2	Year/Month/Day/ (Day of the week)	1×1	China	Number	Chinese character (China)
3	Year/Month/Day/ (Day of the week)	2×1	China	Number	Chinese character (China)
4	Day of the week/ Day/Month/Year	1×1	Asia, Europe	Number	English
$5(* 1$)	Day of the week/ Day/Month/Year	1×1	Asia, Europe	English	English
6	Day of the week/ Day/Month/Year	1×1	US	Number	English
$7(* 2)$	Day of the week/ Day/Month/Year	1×1	US	English	English

(*1) 5 is processed as 4 when 5 or 6 is specified for the delimiter of the first digit.
(*2) 7 is processed as 6 when 5 or 6 is specified for the delimiter of the first digit.

Month display correspondence table

Notation	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Chinese character	01	02	03	04	05	06	07	08	09	10	11	12
English	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

The display type is numbers or English．It depends on the output pattern．

Day of the week correspondence table

Notation	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Chinese character	日	月	火	水	木	金	土
Chinese character （China）	天	$一$	二	三	四	五	六
English	Sun	Mon	Tue	Wed	Thu	Fri	Sat

The display type is Chinese characters，Chinese characters（China），or English．It depends on the output pattern．

In the case of Chinese character or Chinese character（China），day of the week is output as a double－word character．

3rd digit：Date and time specification

Value	Content
0	Date and time
1	Date only
2	Time only

2nd digit：Addition of day of the week

Value	Content
0	Not add
$1\left({ }^{*} 3\right)(* 4)$	Add

（＊3） 1 is processed as 0 when 5 or 6 is specified for the delimiter of the first digit．
（＊4） 1 is processed as 0 when 2 is specified for the date and time specification of the third digit．

1st digit：Delimiter specification

Value	Date	Between date and time	Time
0	／（slash）	－（space）	：（colon）
1	，（space）	－（space）	－（space）
2	－（hyphen）	${ }_{\sim}$（space）	：（colon）
3	．（period）	－（space）	．（period）
4（＊5）	Chinese character	\checkmark（space）	Chinese character
5	None	－（space）	None
6	None	＿（underbar）	None

$\left({ }^{*} 5\right) 4$ is processed as 5 when a value other than 0 to 3 is specified for the output pattern of the fourth digit．

－Example of specification

Conversion pattern	Output content	Output image
H0000	yyyy／mm／dd hh：mm：ss	2014／09／0505：06：32
H0001	yyyy mm dd hh mmss	2014，09 05，05」0632
H0004	yyyy 年 mm 月 dd 日hh 時 mm 分 ss 秒	2014年09月05日 05 時 06 分 32 秒
H0005	yyyymmdd hhmmss	20140905＿050632
H0006	yyyymmdd＿hhmmss	20140905＿050632
H0014	yyyy 年 mm 月 dd 日（d）hh 時 mm 分 ss秒	2014年09月05日（金） 05 時 06 分 32 秒
H0102	yyyy－mm－dd	2014－09－05
H0203	hh．mm．ss	05．06．32
H1000	yyyy／mm／dd $/ \mathrm{hh}: \mathrm{mm}$ ：ss	2014／09／05〕05：06：32
H1010	yyyy／mm／dd（d）¢hh：mm：ss	2014／09／05（金）05：06：32
H2014	yyyy 年 mm 月 dd 日（ d ）hh 時 mm 分 ss秒	2014 年 09 月 05 日（五） 05 時 06 分 32 秒
H3010	yyyy／mm／dd（d）¢hh：mm：ss	2014／09／05（五）05：06：32
H4000	dd／mm／yyyy hh：mm：ss	05／09／2014＿05：06：32
H4006	ddmmyyyy＿hhmmss	05092014＿050632
H4012	d＿dd－mm－yyyy hh：mm：ss	Fri 05－09－2014．05：06：32
H4112	d＿dd－mm－yyyy	Fri＿05－09－2014
H5000	dd／mm／yyyy hh：mm：ss	05／Sep／2014＠05：06：32
H5012	d＿dd－mm－yyyy hh：mm：ss	Fri」05－Sep－2014＠05：06：32
H6000	mm／dd／yyyy hh：mm：ss	09／05／2014＿05：06：32
H6006	mmddyyyy＿hhmmss	09052014＿050632
H6012	d mm－dd－yyyy	Fri＿09－05－2014
H7000	mm／dd／yyyy hh：mm：ss	Sep／05／2014＿05：06：32
H7012	d mm－dd－yyyy＿hh：mm：ss	Fri＿Sep－05－2014＿05：06：32
H7112	d mm－dd－yyyy	Fri＿Sep－05－2014

■ Example of special specification（when automatically corrected）

Conversion pattern	Output content	Output image
H5005 $* 1)$	ddmmyyyy＿hhmmss	$05092014 _050632$
$H 7006(* 2)$	mmddyyyy＿hhmmss	$09052014 _050632$
$H 7016(* 3)$	mmddyyyy＿hhmmss	$09052014 _050632$
$H 5216(* 4)$	hhmmss	050632
$H 4014(* 5)$	ddmmyyyy＿hhmmss	$05092014 _050632$

Operand［D］setting

－Specify the starting address storing character strings．

例1）
［S1］．．．SD50［S2］．．DT0［D］．．．DT10
－出カイメージ 2014年09月25日（木）12時54分31秒

SD50	K 14	年月日時分秒曜	DT10			バイト数
SD51	K 9		DT11	H 30（0）	H 32（2）	
SD52	K25		DT12	H 34（4）	H31（1）	
SD53	K 12		DT13	H 4E	4（年）	
SD54	K 54		DT14	H 39（9）	H 30（0）	
SD55	K31		DT15	H 8E	（月）	
SD56	K4		DT16	H 35（5）	H 32（2）	
			DT17	H FA	3（日）	
			DT18	H 96（木）	H 28（（）	
DT0	H 0014		DT19	H 29（））	H D8（木）	
			DT20	H 31（1）	H 20 （w）	
			DT21	H8E（時）	H 32（2）	
			DT22	H 35（5）	H 9E（時）	
			DT23	H 95（分）	H 34（4）	
			DT24	H 33（3）	H AA（分）	
			DT25	H 95（秒）	H 31（1）	
			DT26		H 62（秒）	

Example 1）
［S1］．．．DT100［S2］．．．DT0［D］．．．DT150
－Output image Wed＿08－06－2020＿23：20：05

	DT100 K 20	Year Month	$\begin{aligned} & \text { DT150 } \\ & \text { DT151 } \end{aligned}$	H 0017	
DT101	K 6			H65（e）	H 57（W）
DT102	K8	Day	DT152	H20（w）	H64（d）
DT103	K 23	Hour	DT153	H 38（8）	H 30（0）
DT104	K 20	Minute	DT154	H 30（0）	H 2D（－）
DT105	K5	Second	DT155	H2D（－）	H 36（6）
DT106	K3	Day of the week	DT156	H 30（0）	H 32（2）
			DT157	H 30（0）	H 32（2）
			DT158	H 32（2）	H 20 （w）
DT0	H 4012		DT159	H3A（：）	H33（3）
DTO	H4012		DT160	H 30（0）	H 32（2）
			DT161	H 30 （0）	H3A（：）
			DT162		H 35（5）

No．of bytes

Flag operation

Name	Description
$\begin{aligned} & \text { SR7 } \\ & \text { SR8 } \\ & \text { (ER) } \end{aligned}$	To be set in case of out－of－range values in indirect access（index modification）．
	To be set when the parameter of［S1］is out of the setting range．
	To be set when the parameter of［ S 2$]$ is out of the setting range．
	To be set when the range between［ S 1$]$ to［ $\mathrm{S} 1+6]$ is out of the accessible range．
	To be set when the destination range is out of the accessible range．

2.7 SCOPY (System Area Copy)

- Ladder diagram

■ Available Operation Units (A: Available)

No operation unit.

- List of operands

Operand	Description
S1	The device address storing the system area number to be copied or constant
S2	The device address storing the starting number of system area or constant
S3	The device address storing the terminating number of system area or constant
D	The starting device address of destination area

Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			$\begin{gathered} \text { Real } \\ \text { number } \end{gathered}$		String " "	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	U	H	SF	DF		
S1	A	A	A	A			A	A								A	A				A
S2	A	A	A	A			A	A								A	A				A
S3	A	A	A	A			A	A								A	A				A
D	A	A	A	A			A	A													A

*1: Only 16-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)

■ Outline of operation

- Copies data in the area specified by S1, S2, and S3 to a specified area.

- Precautions during programming

- S1 is always zero. An operation error occurs when numbers other than zero are specified.
- Specify S3 to be larger than S2.
- When S3 exceeds the upper limit of the system area, an operation error does not occur. The area up to the upper limit of the system area is copied from S2.

- Processing

Example 1) When S2 and S3 are within the system monitor area
[S1]... 0
[S2]... 0
[S3]... 3
[D]...DT10

SM0	H 0011	DT10	H 0011
SM1	H 2233	DT11	H 2233
SM2	H4455	DT12	H 4455
SM3	H 6677	DT13	H 6677
SM4	H 8899	DT14	H 1234

Example 2) When S3 exceeds the upper limit of the system monitor area (when the upper limit of the system monitor area is 315)
[S1]... 0
[S2]... 10
[S3]... 320
[D]...DT100

Flag operation

Name	Description
SR7	To be set in case of out-of-range values in indirect access (index modification).
	To be set when [S1] is other than 0.
	To be set when [S2] is larger than [S3].
	To be set when [S2] is out of the accessible range.
	To be set when the destination range is outside the accessible range.

2.8 BSWAP (High /Low Byte in n Block Exchange)

- Ladder diagram

■ Available Operation Units (A: Available)

No operation unit.

- List of operands

Operand	Description
S	The starting address of the device to exchange the high and low bytes
n	The number of words to exchange the high and low bytes
D	Destination device address to transfer exchanged data

■ Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Real number		String	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \hline \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	U	H	SF	DF	" "	
S	A	A	A	A	A	A	A	A													A
n	A	A	A	A			A	A								A	A				A
D	A	A	A	A			A	A													A

*1: Only 16-bit devices can be modified. (32-bit devices, integer constants, real number constants and character constants cannot be specified.)

■ Outline of operation

- Exchanges the high byte and low byte for [n] words from the device address specified by [S], and transfers it to the area starting from [D].
- The maximum number of exchanged words is 65535.
- When $[n]$ is 0 , no operation is performed.

- Processing

Example) When the operation unit is 16-bit (US, SS)
[i]...US,SS
[S]...DT1
[n]...K3
[D]...DT11

DT0	H 0011	DT10	H 0011
DT1	H 2233	\rightarrow DT11	H 3322
DT2	H 4455	DT12	H 5544
DT3	H 6677	\rightarrow DT13	H 7766
DT4	H 8899	DT14	H 8899

- Flag operation

Name	Description
SR7	To be set in case of out-of-range values in indirect access (index modification).
SR8	To be set when the transfer range is outside the accessible range.

2.9 MV2 (2 Data Move)

- Ladder diagram

■ Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A	A	A	A	A

List of operands

Operand	Description
S1	The device address of the source 1 or constant
S2	The device address of the source 2 or constant
D	Destination device address

Available devices (A: Available)

Operand	16-bit device											32-bit device *1			Integer			Realnumber		String	Index modifier *2
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \hline \text { TS } \\ & \text { CS } \end{aligned}$	$\begin{aligned} & \hline \text { TE } \\ & \text { CE } \end{aligned}$	$\underset{* 3}{\text { IX }}$	$\underset{* 4}{K}$	$\underset{* 5}{U}$	$\underset{* 6}{H}$	$\underset{* 7}{\text { SF }}$	$\begin{aligned} & \text { DF } \\ & \text { *8 } \end{aligned}$	" "	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A
D	A	A	A	A			A	A	A		A	A	A	A							A

*1: Cannot be specified when the operation unit is 16 -bit integer (SS, US).
*2: Only 16-bit deivces, 32-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)
*3: Index registers (10 to IE)
*4: Can be specified only when the operation unit is signed integer (SS, SL).
*5: Can be specified only when the operation unit is unsigned integer (US, UL).
*6: Can be specified only when the operation unit is integer (US, SS, UL, SL)
*7: Can be specified only when the operation unit is single-precision floating point real number (SF).
*8: Can be specified only when the operation unit is double-precision floating point real number (DF).

■ Outline of operation

- Transfers two data specified by [S1] and [S2] to the area starting from [D] all at once according to the operation unit specified by [i].

■ Processing

Example 1) When the operation unit is 16 -bit (US, SS)
[i]...US,SS
[S1] ...DT0
[S2] ...DT2
[D] ...DT3

DT0	H0011	DT0	H 0011
DT1	H 2233	DT1	H 2233
DT2	H 4455	DT2	H 4455
DT3	H 6677	DT3	H 0011
DT4	H 8899	DT4	H 4455

Example 2) When the operation unit is 32-bit (UL, SL, SF)
[i]...UL,SL,SF
[S1] ...DT2 [S2] ...CS5 [D] ...IX0

0	H 11223344				H 55667788
DT2	H 55667788				H CCDDEEFF
					00000000
CS4	H CCDDEEF				H 00000000
CS5	H CCDDEEFF				H 00000000

Flag operation

Name	Description
SR7	To be set in case of out-of-range values in indirect access (index modification).
SR8	To be set when the transfer range is outside the accessible range.

2.10 MV3 (3 Data Move)

■ Ladder diagram

Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A	A	A	A	A

List of operands

Operand	Description
S1	The device address of the source 1 or constant
S2	The device address of the source 2 or constant
S3	The device address of the source 3 or constant
D	Destination device address

Available devices (A: Available)

Operand	16-bit device											32-bit device *1			Integer			Real number		String	Index modifier *2
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \text { TS } \\ & \text { cs } \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	$\mathrm{IX}_{\star 3}$	$\begin{gathered} \mathrm{K} \\ * 4 \end{gathered}$	$\underset{* 5}{U}$	$\underset{* 6}{H}$	$\underset{\star 7}{\mathrm{SF}}$	$\begin{aligned} & \text { DF } \\ & { }_{*} 8 \end{aligned}$	" "	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A		A
D	A	A	A	A			A	A	A		A	A	A	A							A

*1: Cannot be specified when the operation unit is 16-bit integer (SS, US).
*2: Only 16-bit deivces, 32-bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)
*3: Index registers (IO to IE)
*4: Can be specified only when the operation unit is signed integer (SS, SL).
*5: Can be specified only when the operation unit is unsigned integer (US, UL).
*6: Can be specified only when the operation unit is integer (US, SS, UL, SL).
*7: Can be specified only when the operation unit is single-precision floating point real number (SF).
*8: Can be specified only when the operation unit is double-precision floating point real number (DF).

- Outline of operation

- Transfers three data specified by [S1], [S2] and [S3] to the area starting from [D] all at once according to the operation unit specified by [i].

■ Processing

Example 1) When the operation unit is 16 -bit (US, SS)
[i]...US,SS
[S1] ...DT0 [S2] ...DT2 [S3] ...DT4 [D] ...DT12

DT0	H 0011	DT10	H 00AA
DT1	H 2233	DT1	H 00BB
DT2	H4455	DT12	H 0011
DT3	H 6677	DT13	H 4455
DT4	H 8899	\rightarrow DT14	H 8899

Example 2) When the operation unit is 32 -bit (UL, SL, SF)
[i]...UL,SL,SF
[S1] ...DT0 [S2] ...CS4 [S3] ...CS5 [D] ...IX0

Flag operation

Name	Description
SR7	
SR8	
(ER)	

2.11 DEFRBUF (Ring Buffer Definition)

- Ladder diagram

■ Available Operation Units (A: Available)

No operation unit.

- List of operands

Operand	Description
n	The device address storing the buffer size or constant (Settable range: 1 to 30000)
D	The starting device address of a ring buffer

■ Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			Realnumber		String ".	Index modifier *1
	WX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \mathrm{TS} \\ & \mathrm{cs} \end{aligned}$	$\begin{aligned} & \mathrm{TE} \\ & \mathrm{CE} \end{aligned}$	IX	K	U	H	SF	DF		
n	A	A	A	A			A	A	A	A	A					A	A				A
D							A	A													A

*1: Only 16-bit devices, 32 -bit devices, and integer constants can be modified. (Real number constants and character constants cannot be specified.)

■ Outline of operation

- Data can be written to the ring buffer defined by this instruction by RBUFW instruction, and the total value and moving average value can be calculated at high speed.
* Do not use other instructions than RBUFW instruction to write data into the ring buffer.
- Defines the ring buffer for [n] data starting from the area of [D].
- The range of [D+1] (No. of stored data) to [D+6] (write pointer) is initialized (cleared to zero).
- The total value of stored data is stored in [D+2, D+3] (total value).
- The moving average value of stored data is stored in $[D+4, D+5]$ (moving average value).
- When the number of stored data reaches the buffer size, the next data is written from the beginning of the ring buffer and the previous values are overwritten.

Ring buffer		... Size of ring buffer area ... Number of stored data ... Total value of stored data	Data type US
[D]	Buffer size		
[D+1]	No. of stored data		US
[D+2]	Total value		SL/UL
[D+3]		Moving average value of stored data	SF
[D+4]	Moving average value		
[D+5]			
[D+6]	Write pointer	\cdots Relative number from [D+7] US	
\cdots			
\cdots		Size of ring buffer area	
\ldots			
\cdots			

- Processing

1) [n] (buffer size) is set to [D] (the beginning of the buffer).
2) The range of $[D+1]$ (No. of stored data) to $[D+6]$ (write pointer) is cleared to zero.
Example 1)

$$
\begin{aligned}
& \mathrm{n}=\mathrm{U} 4 \\
& \mathrm{D}=\mathrm{DT} 0
\end{aligned}
$$

DT0	K 0	DT0	K 4	Buffer size
DT1	K 1	DT1	K 0	Number of stored data
DT2	K 2	DT2		Total value
DT3	K 3	DT3	K 0	
DT4	K 4	DT4	K 0	Moving average value
DT5	K 5	DT5		
DT6	K 6	DT6	K 0	Write pointer
DT7	K7	DT7	K 5	
DT8	K 8	DT8	K 6	
DT9	K9	DT9	K 7	
DT10	K 10	DT10	K 8	

- Flag operation

Name	Description
SR7	To be set in case of out-of-range values in indirect access (index modification).
	To be set when $[\mathrm{n}]$ (buffer size) is outside the settable range.
(ER)	To be set when the range of $[\mathrm{D}$ (the beginning of a buffer) +n (buffer size)] is out of the accessible range.

2.12 RBUFW (Write to Ring Buffer, Calculation of Total Value and Moving Average Value)

- Ladder diagram

■ Available Operation Units (A: Available)

Operation unit	bit	US	SS	UL	SL	SF	DF
i		A	A				

List of operands

Operand	Description
S	The device address storing written data or constant
D	The starting device address of a ring buffer

■ Available devices (A: Available)

Operand	16-bit device											32-bit device			Integer			$\begin{aligned} & \text { Real } \\ & \text { number } \end{aligned}$		String	Index modifier *1
	wX	WY	WR	WL	WS	SD	DT	LD	UM	WI	wo	$\begin{aligned} & \text { Ts } \\ & \text { cs } \end{aligned}$	$\begin{aligned} & \text { TE } \\ & \text { CE } \end{aligned}$	IX	$\underset{{ }_{*}}{K}$	$\underset{*}{\mathrm{U}}$	H	SF	DF	" "	
S	A	A	A	A	A	A	A	A	A	A	A				A	A	A				A
D							A	A													A

*1: Only 16 -bit devices and integer constants can be modified.
*2: Can be specified only when the operation unit is signed integer (SS).
*3: Can be specified only when the operation unit is unsigned integer (US).

■ Outline of operation

- Data can be written to the ring buffer defined by DEFRBUF instruction by this instruction, and the total value and moving average value can be calculated at high speed.
- Sets the data specified by [S] in the ring buffer area specified by [D], and stores the total value of stored data into $[D+2, D+3]$ and the moving average value into [$D+4, D+5]$.
(Buffer in the buffer area of [D] should be defined in advance by DEFRBUF instruction.) * If the stored data in the ring buffer is changed by other instruction than this instruction, the total value and moving average value cannot be guaranteed.
- Checking the consistency of buffer before the exeuction (An operation error occurs under the following conditionds.)

1) [D] (buffer size) is larger than 30000, or [D] (buffer size) is 0.
2) $[\mathrm{D}+1]$ (Number of stored data) is larger than [D] (buffer size)
3) $[D+4]$ (write pointer) is equall to or larger than [D$]$ (buffer size)
4) The ring buffer area exceeds the upper limit of a specified device.

- Sets [S] in the area specified by [D+6] (write pointer) according to the operation unit of [i].
- Increments [D+6] (write pointer).

When [D+4] (write point) is [D] (buffer size), zero is set to [D+6] (write pointer) after
increment.

* Data is overwritten from the beginning of the ring buffer area when the next instruction is executed. However, the number of stored data does not change.
- Increments [D+1] (number of stored data).
- Calculates the total value of stored data, and stores it in [D+2, $D+3]$.
- Calculates the moving average value of stored data, and stores it in [D+4, $D+5]$.

Ring buffer

uffer			Data ty
[D]	Buffer size	. . - Size of ring buffer area	US
[D+1]	No. of stored data	... Number of stored data	US
[D+2]		\cdots. Total value of stored data	SL/UL
[D+3]	Total value		
[D+4]	Moving average		SF
[D+5]			
[D+6]	Write pointer	\cdots Relative number from [D+7]	US
\cdots			
. \cdot.		Size of ring buffer area	
. \cdot.			
\cdots			

* Ring buffer area is not cleared.

- Processing

Example 1) The first execution (US)
[S]...DT20
[D]...DTO

Example 2) The fifth execution (US)
[S]...DT20 [D]...DT0

Example 3) The sixth execution (US)
[S]...DT20 [D]...DT0

Example 4) The first execution (SS)
[S]...DT20
[D]...DT0

Flag operation

Name	Description
SR7 SR8 (ER)	To be set in case of out-of-range values in indirect access (index modification).
	To be set when [D1] (buffer size) is larger than 30000, or [D1] (buffer size) is 0.
	To be set when [D1+1] (No. of stored data) is larger than [D1] (buffer size).
	To be set when [D1+3] (write pointer) is larger than or equal to [D1] (buffer size).
	To be set when the buffer area exceeds the upper limit of a specified device.

3

List of Instructions

3.1 List of Basic Instructions

Name	Boolean	Symbol	Function overview	On page
Global PB number setting instruction				
Global PB number setting	GPB	$\square\left(\mathrm{GPB}_{n}\right)-$	Declares the global PB number of $[n]$ for the PB in which GPB instruction is written.	$1-2$

3.2 List of High-level Instructions

Name	Operation unit	Boolean		Operand	Function overview	Execution condition		$\begin{gathered} \text { On } \\ \text { page } \end{gathered}$	
				Level		\uparrow			
SD card access instruction									
Panasonic SD card lifetime information read	-	PanaSD	(P)		$\begin{aligned} & \text { D1, D2, } \\ & \text { D3 } \end{aligned}$	Reads the lifetime information of a Panasonic SD card.	-	\bigcirc	2-2
Data processing instruction									
Variance and standard deviation acquisition	US, SS	STDDEV	(P)	S, n, D	Stores the variance and standard deviation within the range of the device area specified by [S] and [n] into the device area specified by [D].	\bigcirc	\bigcirc	2-11	
Four arithmetic operations instruction									
Saturated multiplication	$\begin{aligned} & \text { US, SS, } \\ & \text { UL, SL, } \end{aligned}$	MLCLIP	(P)	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1) \times(\mathrm{S} 2) \rightarrow(\mathrm{D})$	\bigcirc	-	2-14	
Character string conversion instruction									
Date and time character string conversion	-	TIMEstr	(P)	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the date and time information specified by [S1] according to the conversion pattern specified by [S2], and stores the character string in the storage location specified by [D].	\bigcirc	\bigcirc	2-16	
Data transfer instructions									
Specified PB local device write	US, SS, UL, SL,	LCWT	(P)	S, n, PBm, D	Transfers the data for [n] from the area specified by [S] to the area specified by [PBm:D (local device)] and subsequent areas.	\bigcirc	\bigcirc	2-5	
Specified PB local device read	US, SS, UL, SL,	LCRD	(P)	$\begin{aligned} & \text { PBm, S, } \\ & \mathrm{n}, \mathrm{D} \end{aligned}$	Transfers the data for [n] from the area specified by [PBm:S] (local device) to the area specified by [D] and subsequent areas.	\bigcirc	\bigcirc	2-7	
System area copy	-	SCOPY	(P)	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Transfers data to the area specified by S1, S2, and S3 to a specified area.	\bigcirc	\bigcirc	2-21	
High /low byte in n block exchange	-	BSWAP	(P)	S, n, D	Exchanges the high byte and low byte for [n] words from the device address specified by [S], and transfers it to the area starting from [D].	\bigcirc	\bigcirc	2-23	
2 data move	US, SS, UL, SL, SF, DF	MV2	(P)	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	Transfers two data specified by [S1] and [S2] to the area starting from [D].	\bigcirc	\bigcirc	2-25	
3 data move	US, SS, UL, SL, SF, DF	MV3	(P)	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Transfers three data specified by [S1] and [S2] to the area starting from [D].	\bigcirc	\bigcirc	2-27	

Data buffer instructions

Ring buffer definition	-	DEFRBUF	(P)	n, D	Defines the area of [n] words starting from [D] as the data buffer area to be used for FIFR/BUFW/LIFR instructions.	\bigcirc	\bigcirc	2-29
Write to ring buffer, calculation of total value and moving average value	US, SS	RBUFW	(P)	S, D	Reads data from the area indicated by the read pointer of the FIFO buffer starting from [S], and stores it in [D].	\bigcirc	\bigcirc	2-31

Index

B	MV2.. 2-25
BSWAP .. 2-23	MV3..2-27
	\boldsymbol{P}
D	
DEFRBUF 2-29	PanaSD ..2-2
	\boldsymbol{R}
\boldsymbol{G}	
GPB ...1-2	RBUFW.. 2-31
L	\underline{S}
L	SCOPY 2-21
LCRD ... 2-7	$\begin{aligned} & \text { STDDEV ...2-11 } 1.21 \end{aligned}$
LCWT..2-5	STDDEV 211
	T
M	
MLCLIP ..2-14	TIMEstr .. 2 -16

